Publications by authors named "Gianfranco Borin"

The side chain orientation of the tyrosine residue included in a peptide, which is an excellent substrate of Syk tyrosine kinase, was fixed in different conformations by either incorporating the tyrosine in cyclic structures (6-OH-Tic, 5-OH-Aic, and Hat derivatives) or adding a sterically bulky substituent in the tyrosine side chain moiety (beta-MeTyr). Synthetic peptides containing tyrosine analogues displaying different side chain orientations were analyzed by NMR techniques and tested as potential substrates of the nonreceptor tyrosine kinases Syk, Csk, Lyn, and Fyn. The "rotamer scan" of the phosphorylatable residue generated optimal substrates in terms of both phosphorylation efficiency and selectivity for Syk tyrosine kinase, while the peptidomimetics were not recognized by the other tyrosine kinases.

View Article and Find Full Text PDF

Eukaryotic signal transduction involves the assembly of transient protein-protein complexes mediated by modular interaction domains. Specific Pro-rich sequences with the consensus core motif PxxP adopt the PPII helix conformation upon binding to SH3 domains. For short Pro-rich peptides, little or no ordered secondary structure is usually observed before binding interactions.

View Article and Find Full Text PDF

Cathepsin B is a cysteine protease that in tumor tissues is localized in both acidic lysosomes and extracellular spaces. It can catalyze the cleavage of peptide bonds by two mechanisms: endoproteolytic attack with a pH optimum around 7.4, and attack from the C-terminus with a pH optimum at 4.

View Article and Find Full Text PDF

First isolated and characterized in 1900 by Gulewitsch, carnosine (beta-alanyl-L-hystidine) is a dipeptide commonly present in mammalian tissue, and in particular in skeletal muscle cells; it is responsible for a variety of activities related to the detoxification of the body from free radical species and the by-products of membrane lipids peroxidation, but recent studies have shown that this small molecule also has membrane-protecting activity, proton buffering capacity, formation of complexes with transition metals, and regulation of macrophage function. It has been proposed that carnosine could act as a natural scavenger of dangerous reactive aldehydes from the degradative oxidative pathway of endogenous molecules such as sugars, polyunsaturated fatty acids (PUFAs) and proteins. In particular, it has been recently demonstrated that carnosine is a potent and selective scavenger of alpha,beta-unsaturated aldehydes, typical by-products of membrane lipids peroxidation and considered second messengers of the oxidative stress, and inhibits aldehyde-induced protein-protein and DNA-protein cross-linking in neurodegenerative disorders such as Alzheimer's disease, in cardiovascular ischemic damage, in inflammatory diseases.

View Article and Find Full Text PDF

The synthesis, scavenging activity, and cytoprotective profiles of histidyl-containing carnosine analogues bearing hydrazide or 1,2-diol moieties is reported. Some compounds have demonstrated higher aldehyde-sequestering efficiency than carnosine and were also efficient in protecting SH-SY5Y neuroblastoma cells and rat hippocampal neurons from 4-hydroxy-trans-2,3-nonenal (HNE)-mediated death. The cytoprotective efficacy of these compounds suggests their potential use as therapeutic agents for disorders that involve excessive membrane lipids peroxidation and HNE-mediated neuronal toxicity.

View Article and Find Full Text PDF

Tat cell-penetrating peptide (GRKKRRQRRRPPQG) is able to translocate and carry molecules across cell membranes. Using CD spectroscopy the conformation of this synthetic peptide was studied in aqueous and membrane-mimicking, micellar SDS solutions at different temperatures. The CD spectrum of the Tat cell-penetrating peptide in SDS micellar solution was virtually unchanged from that in aqueous solution, and at low temperature it was close to that of a poly(proline) II helix.

View Article and Find Full Text PDF

The side-chain orientation of a tyrosine residue located in a peptide, which is an excellent substrate of Syk tyrosine kinase (A. M. Brunati, A.

View Article and Find Full Text PDF

We have synthesized and examined the preferred conformation of a set of N-benzhydryl-glycolamide esters from N(alpha)-protected (or N(alpha)-blocked) alpha-amino acids. Experiments were performed in CDCl(3) solution by Fourier transform infrared absorption and (1)H-NMR techniques, and in the crystalline state by x-ray diffraction. The results of our analysis strongly support the view that this type of N(alpha)-acylated alpha-aminoacyl esters has a marked tendency to fold into a beta-turn conformation, the nature of which is dictated by the structural propensity of the amino acid constituent at the i+1 position.

View Article and Find Full Text PDF

The ability of Syk protein tyrosine kinase (PTK) to phosphorylate peptides, where tyrosine had been replaced by conformationally constrained analogs, has been exploited to develop highly selective substrates suitable for the specific monitoring of Syk activity. In particular we have synthesized a peptidomimetic, RRRAAEDDE(L-Htc)EEV (syktide), with the 3(S)-7-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxyl acid residue (L-Htc) replaced for tyrosine, which is phosphorylated by Syk with remarkable efficiency (K(cat)=73 min(-1), K(m)=11 microM), while it is not affected to any appreciable extent by a number of PTKs tested so far. These properties make syktide the first choice substrate for the specific monitoring of Syk.

View Article and Find Full Text PDF