Molecular biomarkers are very important in biology, biotechnology and even in medicine, but it is quite hard to convert biology-related signals into measurable data. For this purpose, amperometric biosensors have proven to be particularly suitable because of their specificity and sensitivity. The operation and shelf stability of the biosensor are quite important features, and storage procedures therefore play an important role in preserving the performance of the biosensors.
View Article and Find Full Text PDFThe oxidative metabolism of ethanol into acetaldehyde involves several enzymes, including alcohol dehydrogenase (ADH) and catalase-hydrogen peroxide (HO). In this regard, while it is well known that 4-methylpyrazole (4-MP) acts by inhibiting ADH in the liver, little attention has been placed on its ability to interfere with fatty acid oxidation-mediated generation of HO, a mechanism that may indirectly affect catalase whose enzymatic activity requires HO. The aim of our investigation was twofold: 1) to evaluate the effect of systemic (i.
View Article and Find Full Text PDFThe amount and composition of the phenolic components play a major role in determining the quality of olive oil. The traditional liquid-liquid extraction (LLE) method requires a time-consuming sample preparation to obtain the "phenolic profile" of extra virgin olive oil (EVOO). This study aimed to develop a microdialysis extraction (MDE) as an alternative to the LLE method to evaluate the phenolic components of EVOO.
View Article and Find Full Text PDFAn integrated device for real-time monitoring of glucose and phenols absorption, that consists of a sensors/biosensors system (SB) and a Caco-2TC7 human intestinal cell culture, is described in this study. The SB is composed of a glucose oxidase-based biosensor, a sentinel platinum sensor, a laccase/tyrosinase-based biosensor and a sentinel carbon sensor, all located in the basolateral compartment (BC) of a cell culture plate. Caco-2TC7 cells, differentiated on culture inserts, separated the apical compartment that simulates the intestinal lumen, from the BC which represented the bloodstream.
View Article and Find Full Text PDFFour fullerenes- or nanotubes-modified graphite sensor-biosensor systems (SBs), coupled with a dual-channel telemetric device, based on an ascorbate oxidase (AOx) biosensor, were developed for on line simultaneous amperometric detection of ascorbic acid (AA) and antioxidant capacity in blueberry, kiwi and orange juice. Fullerene C60 (FC60), fullerene C70 (FC70), single-walled carbon nanotubes (SWCN) and multi-walled carbon nanotubes (MWCN) increased the sensitivity of graphite toward AA and phenols 1.2, 1.
View Article and Find Full Text PDFA new carbon ascorbate oxidase-based sensor-biosensor system (SB) was coupled to a dual-channel telemetric device for online simultaneous electrochemical detection of ascorbic acid (AA) and antioxidant capacity in Hamlin, Sanguinello, and Moro orange varieties. The electrocatalytic performances of the SB were investigated by cyclic voltammetry and amperometric techniques. The phenol composition of orange juice of each variety, and the cyclic voltammetries of the most represented phenols, were provided.
View Article and Find Full Text PDFA new telemetry system for simultaneous detection of extracellular brain glucose and lactate and motion is presented. The device consists of dual-channel, single-supply miniature potentiostat-I/V converter, a microcontroller unit, a signal transmitter, and a miniaturized microvibration sensor. Although based on simple and inexpensive components, the biotelemetry device has been used for accurate transduction of the anodic oxidation currents generated on the surface of implanted glucose and lactate biosensors and animal microvibrations.
View Article and Find Full Text PDFThe neurotoxin MPTP is known to induce dopamine release and depletion of ATP in the striatum of rats. Therefore, we studied the changes induced by MPTP and pargyline protection both on striatal dopamine release and on extracellular energy metabolites in freely moving rats, using dual asymmetric-flow microdialysis. A dual microdialysis probe was inserted in the right striatum of rats.
View Article and Find Full Text PDFEthyl alcohol may be considered one of the most widespread central nervous system (CNS) depressants in Western countries. Because of its toxicological and neurobiological implications, the detection of ethanol in brain extracellular fluid (ECF) is of great importance. In a previous study, we described the development and characterization of an implantable biosensor successfully used for the real-time detection of ethanol in the brain of freely-moving rats.
View Article and Find Full Text PDFThe present paper deals with a novel telemetric device combined with a carbon amperometric sensor system to determine postharvest changes of ascorbic acid (AA) in fresh-cut fruits, without displacing products out of the storage rooms. The investigation was performed on kiwi, pineapple and melon, subjected to minimal processing, packaging, cold storage, and simulated shelf life. Results demonstrated that AA content of fresh-cut fruits of all species declines differently during storage.
View Article and Find Full Text PDFEthanol is one of the most widespread psychotropic agents in western society. While its psychoactive effects are mainly associated with GABAergic and glutamatergic systems, the positive reinforcing properties of ethanol are related to activation of mesolimbic dopaminergic pathways resulting in a release of dopamine in the nucleus accumbens. Given these neurobiological implications, the detection of ethanol in brain extracellular fluid (ECF) is of great importance.
View Article and Find Full Text PDFBrain microdialysis is an analytical technique used for the dynamic monitoring of brain neurochemistry in awake, freely moving animals. This technique requires the insertion of a small dialysis catheter, called a microdialysis probe, into a specific brain region, and its perfusion with an artificial extracellular fluid. The microdialysate samples, obtained from the probe outlet, can be analysed using high-performance liquid chromatography with electrochemical detection for the quantification of oxidizable molecules recovered from the extracellular space.
View Article and Find Full Text PDFAnimal models of Parkinson's disease are essential to explore pathophysiological hypotheses and to test new treatment options, including neurotrophic factors. Catecholaminergic neurotoxins used to generate such models are 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. These neurotoxins predominantly kill dopaminergic neurons through oxidative damage and mitochondrial failure, although 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine fails to induce a significant dopaminergic neurodegeneration in rats.
View Article and Find Full Text PDFMicrodialysis is an extensively used technique for both in vivo and in vitro experiments, applicable to animal and human studies. In neurosciences, the in vivo microdialysis is usually performed to follow changes in the extracellular levels of substances and to monitor neurotransmitters release in the brain of freely moving animals. Catecholamines, such as dopamine and their related compounds, are involved in the neurochemistry and in the physiology of mental diseases and neurological disorders.
View Article and Find Full Text PDFThe classical animal models of Parkinson's disease (PD) rely on the use of neurotoxins, including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine and, more recently, the agricultural chemicals paraquat and rotenone, to deplete dopamine (DA). These neurotoxins elicit motor deficits in different animal species although MPTP fails to induce a significant dopaminergic neurodegeneration in rats. In the attempt to better reproduce the key features of PD, in particular the progressive nature of neurodegeneration, alternative PD models have been developed, based on the genetic and neuropathological links between -synuclein ( -syn) and PD.
View Article and Find Full Text PDFAscorbic acid (AA), one of the principal micronutrients in horticultural crops, plays a key role in the human metabolism, and its determination in food products has a great significance. Citrus fruits are rich in AA, but its content is highly susceptible to change during postharvest processing and storage. We present a new ultralow-cost system, constituted of an amperometric microsensor composed of three rod carbon electrodes connected to a telemetric device, for online detection of AA in orange juice, as an alternative to conventional analytical methods.
View Article and Find Full Text PDFA miniaturized biotelemetric device for the amperometric detection of brain tissue oxygen is presented. The new system, derived from a previous design, has been coupled with a carbon microsensor for the real-time detection of dissolved O(2) in the striatum of freely moving rats. The implantable device consists of a single-supply sensor driver, a current-to-voltage converter, a microcontroller, and a miniaturized data transmitter.
View Article and Find Full Text PDFIn this study we present the real-time monitoring of three key brain neurochemical species in conscious rats using implantable amperometric electrodes interfaced to a biotelemetric device. The new system, derived from a previous design, was coupled with carbon-based microsensors and a platinum-based biosensor for the detection of ascorbic acid (AA), O(2) and glucose in the striatum of untethered, freely-moving rats. The miniaturized device consisted of a single-supply sensor driver, a current-to-voltage converter, a microcontroller and a miniaturized data transmitter.
View Article and Find Full Text PDFA novel dual channel in vitro apparatus, derived from a previously described design, has been coupled with dopamine (DA) microsensors for the flow-through detection of DA secreted from PC12 cells. The device, including two independent microdialysis capillaries, was loaded with a solution containing PC12 cells while a constant phosphate-buffered saline (PBS) medium perfusion was carried out using a dual channel miniaturized peristaltic pump. One capillary was perfused with normal PBS, whereas extracellular calcium was removed from extracellular fluid of the second capillary.
View Article and Find Full Text PDF