Publications by authors named "Giandra Volpato"

The objective of this study was to develop a bioprocess for lactose hydrolysis in diverse dairy matrices, specifically skim milk and cheese whey, utilizing column reactors employing a core-shell enzymatic system featuring β-galactosidase fused to a Cellulose Binding Domain (CBD) tag (β-galactosidase-CBD). The effectiveness of reactor configurations, including ball columns and toothed columns operating in packed and fluidized-bed modes, was evaluated for catalyzing lactose hydrolysis in both skim milk and cheese whey. In a closed system, these reactors achieved lactose hydrolysis rates of approximately 50% within 5 h under all evaluated conditions.

View Article and Find Full Text PDF

The objective of this study was to immobilize a recombinant β-galactosidase (Gal) tagged with a cellulose-binding domain (CBD) onto a magnetic core-shell (CS) cellulose system. After 30 min of reaction, 4 U/capsule were immobilized (CS@Gal), resulting in levels of yield and efficiency exceeding 80 %. The optimal temperature for β-galactosidase-CBD activity increased from 40 to 50 °C following oriented immobilization.

View Article and Find Full Text PDF

The present study reviewed and discussed the promising affinity tags for one-step purification and immobilization of recombinant proteins. The approach used to structure this systematic review was The Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) methodology. The Scopus and Web of Science databases were used to perform the bibliographic survey by which 267 articles were selected.

View Article and Find Full Text PDF

This study aimed to develop single-step purification and immobilization processes on cellulosic supports of β-galactosidase from Kluyveromyces sp. combined with the Cellulose-Binding Domain (CBD) tag. After 15 min of immobilization, with an enzymatic load of 150 U/g, expressed activity values reached 106.

View Article and Find Full Text PDF

For the first time, this work reported the one-step purification and targeted immobilization process of a β-galactosidase (Gal) with the Cellulose Binding Domain (CBD) tag, by binding it to different magnetic cellulose supports. The process efficiency after β-galactosidase-CBD immobilization on magnetic cellulose-based supports showed values of approximately 90% for all evaluated enzymatic loads. Compared with free Gal, derivatives showed affinity values between β-galactosidase and the substrate 1.

View Article and Find Full Text PDF

The aim of this study was to synthesize iron magnetic nanoparticles functionalized with histidine and nickel (FeO-His-Ni) to be used as support materials for oriented immobilization of His-tagged recombinant enzymes of high molecular weight, using β-galactosidase as a model. The texture, morphology, magnetism, thermal stability, pH and temperature reaction conditions, and the kinetic parameters of the biocatalyst obtained were assessed. In addition, the operational stability of the biocatalyst in the lactose hydrolysis of cheese whey and skim milk by batch processes was also assessed.

View Article and Find Full Text PDF

This study aimed to produce and characterize a recombinant Kluyveromyces sp. β-galactosidase fused to a cellulose-binding domain (CBD) for industrial application. In expression assays, the highest enzymatic activities occurred after 48 h induction on Escherichia coli C41(DE3) strain at 20 °C in Terrific Broth (TB) culture medium, using isopropyl β-d-1-thiogalactopyranoside (IPTG) 0.

View Article and Find Full Text PDF

Objective: The aim of the present study was to evaluate the efficiency of lactose derived from cheese whey and cheese whey permeate as inducer of recombinant Kluyveromyces sp. β-galactosidase enzyme produced in Escherichia coli. Two E.

View Article and Find Full Text PDF

Enzymes are proteins specialized in catalyzing biological reactions. However, factors such as cost and operational limitations could limit their applications in the industrial sector. An alternative to these limiting factors is enzyme immobilization, which enables reuse and increases biocatalyst stability.

View Article and Find Full Text PDF

Hydrolysis efficiency of β-galactosidases is affected due to a strong inhibition by galactose, hampering the complete lactose hydrolysis. One alternative to reduce this inhibition is to perform mutations in the enzyme's active site. The aim of this study was to evaluate the effect of point mutations on the active site of different microbial β-galactosidases, using computational techniques.

View Article and Find Full Text PDF

We describe a process for obtaining nanocrystalline cellulose (NC) by either acidic (H-NC) or alkaline treatment (OH-NC) of microcrystalline cellulose, which was subsequently bonded to magnetic nanoparticles (H-NC-MNP and OH-NC-MNP) and used as support for the immobilization of Aspergillus oryzae (H-NC-MNP-Ao and OH-NC-MNP-Ao) and Kluyveromyces lactis (H-NC-MNP-Kl and OH-NC-MNP-Kl) β-galactosidases. The mean size of magnetic nanocellulose particles was approximately 75 nm. All derivatives reached saturation magnetizations of 7-18 emu/g, with a coercivity of approximately 4 kOe.

View Article and Find Full Text PDF

We studied the modification of Immobead 150 support by either introducing aldehyde groups using glutaraldehyde (Immobead-Glu) or carboxyl groups through acid solution (Immobead-Ac) for enzyme immobilization by covalent attachment or ion exchange, respectively. These two types of immobilization were compared with the use of epoxy groups that are now provided on a commercial support. We used Aspergillus oryzae β-galactosidase (Gal) as a model protein, immobilizing it on unmodified (epoxy groups, Immobead-Epx) and modified supports.

View Article and Find Full Text PDF

This work is the first study of the immobilization of Aspergillus oryzae β-galactosidase (Gal) on powdered collagen (Col) that had formed a chelate with aluminum (Col-Al-Gal). Other collagen treatments, including those with acetic acid, glutaraldehyde, and a combination of aluminum and glutaraldehyde (Col-Al-Glu-Gal), were also tested. High-yield (superior to 80%) and high-efficiency (superior to 99%) immobilization was obtained for the derivatives Col-Al-Gal and Col-Al-Glu-Gal, even at high protein loads (500-1,000 mg g of support).

View Article and Find Full Text PDF

This work aimed at evaluating the influence of enzyme concentration, temperature, and reaction time in the lactose hydrolysis process in milk, cheese whey, and whey permeate, using two commercial β-galactosidases of microbial origins. We used Aspergillus oryzae (at temperatures of 10 and 55°C) and Kluyveromyces lactis (at temperatures of 10 and 37°C) β-galactosidases, both in 3, 6, and 9 U/mL concentrations. In the temperature of 10°C, the K.

View Article and Find Full Text PDF

Staphylococcus warneri strain EX17 produces three lipases with different molecular weights of 28, 30, and 45 kDa. The 45 kDa fraction (SWL-45) has been purified from crude protein extracts by one chromatographic step based on the selective adsorption of this lipase by interfacial activation on different hydrophobic supports at low ionic strength. The adsorption of SWL-45 on octyl-Sepharose increased the enzyme activity by 60%, but the other lipases were also adsorbed on this support.

View Article and Find Full Text PDF

In this research, the combined effects of polydimethylsiloxane (PDMS) and different conditions of oxygen volumetric mass transfer coefficient (k(L)a) on lipase production by Staphylococcus warneri EX17 were studied and optimized in bioreactor cultures. Raw glycerol from biodiesel synthesis was used as the sole carbon source. Full-factorial central composite design and the response surface methodology were employed for the experimental design and analysis of the results.

View Article and Find Full Text PDF

Three different lipases from the extract crude of Staphylococcus warneri have been purified by specific lipase-lipase interactions using different lipases (TLL, RML, PFL, BTL2) covalently attached to a solid support as adsorption matrix. BTL2 immobilized on glyoxyl-DTT adsorbed selectivity only a 30 kDa lipase from the crude, which was desorbed by adding 0.1% triton X-100.

View Article and Find Full Text PDF

Immobilized-stabilized aminated lipase from Thermomyces lanuginosus (TLL-A) is not easily reactivated after inactivation by incubation in the presence of organic solvents or chaotropic reagents. To improve the recovered activity of this biocatalyst, immobilized TLL-A has been submitted to different modifications. The best results were obtained when the enzyme was coated with a very hydrophilic and inert polymer: dextran modified with glycine (Dx-Gly).

View Article and Find Full Text PDF

In this work, we describe the optimization of the ethanolysis of soybean oil by the enzyme Lipozyme TL-IM in the lipase-catalyzed biodiesel synthesis and the improvement of the enzyme stability over repeated batches. The studied process variables were: reaction temperature, substrate molar ratio, enzyme content, and volume of added water. Fractional factorial design was used to analyze the variables so as to select those with higher influence on the reaction and then perform a central composite design to find the optimal reaction conditions.

View Article and Find Full Text PDF