In this paper, we present a method for micro-endoscopic topography measurement utilizing two-wavelength holography. Initially, we evaluate the inter-core dispersion and cross-talk of two commercially available imaging fiber bundles (CFBs) and introduce the concept of virtual surface roughness as a limiting factor of achievable measurement resolution. Subsequently, we describe a micro-endoscope setup incorporating 3D-printed micro-optics, resulting in a total diameter of less than 450 µm.
View Article and Find Full Text PDFThe van Cittert-Zernike theorem states that the Fourier transform of the intensity distribution function of a distant, incoherent source is equal to the complex degree of coherence. In this Letter, we present a method for measuring the complex degree of coherence in one shot by recording the interference patterns produced by multiple aperture pairs. The intensity of the sample is obtained by Fourier transforming the complex degree of coherence.
View Article and Find Full Text PDFLensless microscopy is attractive because lenses are often large, heavy and expensive. We report diffraction-limited, sub-micrometer resolution in a lensless imaging system that does not need a reference wave and imposes few restrictions on the density of the sample. We use measurements of the intensity of light scattered by the sample at multiple heights above the sample and a modified Gerchberg-Saxton algorithm to reconstruct the phase of the optical field.
View Article and Find Full Text PDFIn this paper, we demonstrate digital holographic imaging through a 27-m-long fog tube filled with ultrasonically generated fog. Its high sensitivity makes holography a powerful technology for imaging through scattering media. With our large-scale experiments, we investigate the potential of holographic imaging for road traffic applications, where autonomous driving vehicles require reliable environmental perception in all weather conditions.
View Article and Find Full Text PDFIn this work, we propose a physics-enhanced two-to-one Y-neural network (two inputs and one output) for phase retrieval of complex wavefronts from two diffraction patterns. The learnable parameters of the Y-net are optimized by minimizing a hybrid loss function, which evaluates the root-mean-square error and normalized Pearson correlated coefficient on the two diffraction planes. An angular spectrum method network is designed for self-supervised training on the Y-net.
View Article and Find Full Text PDFThis Letter presents a ray phase mapping model (RPM) for fringe projection profilometry (FPP) that avoids calibrating intrinsic parameters. The novelty of the RPM, to the best of our knowledge, is the ability to characterize the imaging system with independent rays for each pixel, and to associate the rays with the projected phase in the illumination field for efficient 3D mapping, which avoids complex imaging-specific modeling about lens layout and distortion. Two loss functions are constructed to flexibly optimize camera ray parameters and mapping coefficients, respectively.
View Article and Find Full Text PDFBased on synchronous phase shift determination, we propose a differential phase measurement method for differential interference contrast (DIC) microscopy. An on-line phase shift measurement device is used to generate carrier interferograms and determine the phase shift of DIC images. Then the differential phase can be extracted with the least-squares phase-shifting algorithm.
View Article and Find Full Text PDFIn this paper, we show how high-resolution phase imaging is obtained from multiple intensity diffraction patterns. The results of the experiments carried out with different microscopic phase and amplitude samples illuminated with coherent and partially coherent light are presented. A comparison with experimental results obtained by digital holographic microscopy is given, and advantages/disadvantages of the techniques are discussed.
View Article and Find Full Text PDFThis Roadmap article on digital holography provides an overview of a vast array of research activities in the field of digital holography. The paper consists of a series of 25 sections from the prominent experts in digital holography presenting various aspects of the field on sensing, 3D imaging and displays, virtual and augmented reality, microscopy, cell identification, tomography, label-free live cell imaging, and other applications. Each section represents the vision of its author to describe the significant progress, potential impact, important developments, and challenging issues in the field of digital holography.
View Article and Find Full Text PDFStructured illumination digital holographic microscopy (SI-DHM) is a high-resolution, label-free technique enabling us to image unstained biological samples. SI-DHM has high requirements on the stability of the experimental setup and needs long exposure time. Furthermore, image synthesizing and phase correcting in the reconstruction process are both challenging tasks.
View Article and Find Full Text PDFBased on the optical memory effect of scattered light, we developed a new single-pixel camera concept. The retrieved images contain both 3D and spectral information about the sample. A spatial light modulator (SLM) generates a random intensity modulation.
View Article and Find Full Text PDFIn this paper we describe a phase retrieval algorithm using constraints given by diffraction patterns and phase difference obtained from bidirectional interference. Wave propagation and linear phase ramps are used to connect the recordings. At least three patterns are recorded and processed (two diffraction patterns and one interference pattern).
View Article and Find Full Text PDFIn this Letter, we describe a method for retrieving the phase of a wavefield from a volume diffraction pattern. We show at first that the magnitude of the 3D Fourier transform of a diffracted volume wavefield is concentrated around a paraboloid. For the phase retrieval, we apply iteratively the constraints of the measured intensity and the paraboloid (sparsity) constraint in the 3D Fourier domain.
View Article and Find Full Text PDFScatter-plate microscopy (SPM) is a lensless imaging technique for high-resolution imaging through scattering media. So far, the method was demonstrated for spatially incoherent illumination and static scattering media. In this publication, we demonstrate that these restrictions are not necessary.
View Article and Find Full Text PDFDark-field microscopy is a powerful technique for enhancing the imaging resolution and contrast of small unstained samples. In this study, we report a method based on end-to-end convolutional neural network to reconstruct high-resolution dark-field images from low-resolution bright-field images. The relation between bright- and dark-field which was difficult to deduce theoretically can be obtained by training the corresponding network.
View Article and Find Full Text PDFIn this manuscript, we propose a quantitative phase imaging method based on deep learning, using a single wavelength illumination to realize dual-wavelength phase-shifting phase recovery. By using the conditional generative adversarial network (CGAN), from one interferogram recorded at a single wavelength, we obtain interferograms at other wavelengths, the corresponding wrapped phases and then the phases at synthetic wavelengths. The feasibility of the proposed method is verified by simulation and experiments.
View Article and Find Full Text PDFMicrolens array-based light-field imaging has been one of the most commonly used and effective technologies to record high-dimensional optical signals for developing various potential high-performance applications in many fields. However, the use of a microlens array generally suffers from an intrinsic trade-off between the spatial and angular resolutions. In this paper, we concentrate on exploiting a diffuser to explore a novel modality for light-field imaging.
View Article and Find Full Text PDFThis Letter reports an approach to single-shot three-dimensional (3D) imaging that is combining structured illumination and light-field imaging. The sinusoidal distribution of the radiance in the structured-light field can be processed and transformed to compute the angular variance of the local radiance difference. The angular variance across the depth range exhibits a single-peak distribution trend that can be used to obtain the unambiguous depth.
View Article and Find Full Text PDFMost of the neural networks proposed so far for computational imaging (CI) in optics employ a supervised training strategy, and thus need a large training set to optimize their weights and biases. Setting aside the requirements of environmental and system stability during many hours of data acquisition, in many practical applications, it is unlikely to be possible to obtain sufficient numbers of ground-truth images for training. Here, we propose to overcome this limitation by incorporating into a conventional deep neural network a complete physical model that represents the process of image formation.
View Article and Find Full Text PDFLight-field imaging can simultaneously record spatio-angular information of light rays to carry out depth estimation via depth cues which reflect a coupling of the angular information and the scene depth. However, the unavoidable imaging distortion in a light-field imaging system has a side effect on the spatio-angular coordinate computation, leading to incorrectly estimated depth maps. Based on the previously established unfocused plenoptic metric model, this paper reports a study on the effect of the plenoptic imaging distortion on the light-field depth estimation.
View Article and Find Full Text PDFIn this paper, we have applied a recently developed complex-domain hyperspectral denoiser for the object recognition task, which is performed by the correlation analysis of investigated objects' spectra with the fingerprint spectra from the same object. Extensive experiments carried out on noisy data from digital hyperspectral holography demonstrate a significant enhancement of the recognition accuracy of signals masked by noise, when the advanced noise suppression is applied.
View Article and Find Full Text PDFWe investigated the capabilities of deconvolution for image enhancement in scatter-plate microscopy. This lensless imaging technique enables the investigation of microstructures through scattering media by cross-correlating the scattered light intensity with a previously recorded point spread function (PSF) of the scattering medium. The autocorrelation function of the PSF appears as the transfer function of the imaging process.
View Article and Find Full Text PDFFor unfocused plenoptic imaging systems, metric calibration is generally mandatory to achieve high-quality imaging and metrology. In this paper, we present an explicit derivation of an unfocused plenoptic metric model associating a measured light field in the object space with a recorded light field in the image space to conform physically to the imaging properties of unfocused plenoptic cameras. In addition, the impact of unfocused plenoptic imaging distortion on depth computation was experimentally explored, revealing that radial distortion parameters contain depth-dependent common factors, which were then modeled as depth distortions.
View Article and Find Full Text PDFLarge depth of field (DOF) is a longstanding goal in optical imaging field. In this paper we presented a simple but efficient method to extend the DOF of a diffraction-limited imaging system using a thin scattering diffuser. The DOF characteristic of the imaging system with random phase modulation was analyzed based on the analytical model of ambiguity function as a polar display of the optical transfer function (OTF).
View Article and Find Full Text PDFPassive light field imaging generally uses depth cues that depend on the image structure to perform depth estimation, causing robustness and accuracy problems in complex scenes. In this study, the commonly used depth cues, defocus and correspondence, were analyzed by using phase encoding instead of the image structure. The defocus cue obtained by spatial variance is insensitive to the global spatial monotonicity of the phase-encoded field.
View Article and Find Full Text PDF