Publications by authors named "Giancarlo Pagnani"

Sustainable alternatives are essential to improving agriculture production to meet the growing world's critical demands. Cyanobacteria and microalgae are considered renewable resources with a wide range of potential uses in the agricultural sector. We aimed to isolate cyanobacteria and microalgae from the mud of a carbon dioxide-rich sulfur pond and to investigate their plant growth-promoting (PGP) and soil bio-consolidating ability.

View Article and Find Full Text PDF

Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated.

View Article and Find Full Text PDF

Positron Emission Tomography is a non-disruptive and high-sensitive digital imaging technique which allows to measure and non invasively the changes of metabolic and transport mechanisms in plants. When it comes to the early assessment of stress-induced alterations of plant functions, plant PET has the potential of a major breakthrough. The development of dedicated plant PET systems faces a series of technological and experimental difficulties, which make conventional clinical and preclinical PET systems not fully suitable to agronomy.

View Article and Find Full Text PDF

Esca of grapevine causes yield losses correlated with incidence and severity symptom expression. Factors associated with leaf symptom mechanisms are yet to be fully clarified. Therefore, in 2019 and 2020, macro and microelement analyses and leaf reflectance measurements were carried out on leaves at different growth stages in a vineyard located in Abruzzo, central Italy.

View Article and Find Full Text PDF

Plant stress detection is considered one of the most critical areas for the improvement of crop yield in the compelling worldwide scenario, dictated by both the climate change and the geopolitical consequences of the Covid-19 epidemics. A complicated interconnection of biotic and abiotic stressors affect plant growth, including water, salt, temperature, light exposure, nutrients availability, agrochemicals, air and soil pollutants, pests and diseases. In facing this extended panorama, the technology choice is manifold.

View Article and Find Full Text PDF