Publications by authors named "Giancarlo Blasio"

Mutations in cause a spectrum of glomerular disorders, including thin basement membrane nephropathy (TBMN) and Alport syndrome (AS). The wide application of next-generation sequencing (NGS) in the last few years has revealed that mutations in these genes are not limited to these clinical entities. In this study, 176 individuals with a clinical diagnosis of inherited kidney disorders underwent an NGS-based analysis to address the underlying cause; those who changed or perfected the clinical diagnosis after molecular analysis were selected.

View Article and Find Full Text PDF

Background: Urine concentrating defect is a common dysfunction in ciliopathies, even though its underlying mechanism and its prognostic meaning are largely unknown. This study assesses renal function in a cohort of 54 Bardet-Biedl syndrome (BBS) individuals and analyses whether renal hyposthenuria is the result of specific tubule dysfunction and predicts renal disease progression.

Methods: The estimated glomerular filtration rate (eGFR), urine albumin:creatinine ratio (ACR) and maximum urine osmolality (max-Uosm) were measured in all patients.

View Article and Find Full Text PDF

Background: Genetic testing of patients with inherited kidney diseases has emerged as a tool of clinical utility by improving the patients' diagnosis, prognosis, surveillance and therapy.

Methods: The present study applied a Next Generation Sequencing (NGS)-based panel, named NephroPlex, testing 115 genes causing renal diseases, to 119 individuals, including 107 probands and 12 relatives. Thirty-five (poly)cystic and 72 non (poly)cystic individuals were enrolled.

View Article and Find Full Text PDF

ZNF224 is a KRAB-zinc finger transcription factor that exerts a key tumor suppressive role in chronic myelogenous leukemia. In this study, we identify the receptor tyrosine kinase Axl as a novel target of ZNF224 transcriptional repression activity. Axl overexpression is found in many types of cancer and is frequently associated with drug resistance.

View Article and Find Full Text PDF

The transcription factor ZNF224 plays a key proapoptotic role in chronic myelogenous leukemia (CML), by modulating Wilms Tumor protein 1 (WT1) dependent apoptotic genes transcription. Recently, we demonstrated that Bcr-Abl signaling represses ZNF224 expression in Bcr-Abl positive CML cell lines and in CML patients. Interestingly, Imatinib and second-generation tyrosine kinase inhibitors specifically increase ZNF224 expression.

View Article and Find Full Text PDF