The very early steps of Au metal cluster formation in Er-doped silica have been investigated by high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS). A combined analysis of the near-edge and extended part of the experimental spectra shows that Au cluster nucleation starts from a few Au and O atoms covalently interconnected, likely in the presence of embryonic Au-Au correlation. The first Au clusters, characterized by a well defined Au-Au coordination distance, form upon 400 °C inert annealing.
View Article and Find Full Text PDFThe occurrence of a very efficient non-resonant energy transfer process forming ultrasmall Au-Ag nanoalloy clusters and Er(3+) ions is investigated in silica. The enhancement of the room temperature Er(3+) emission efficiency by an order of magnitude is achieved by coupling rare-earth ions to molecule-like (Au(x)Ag(1-x))N alloy nanoclusters with N = 10-15 atoms and x = 0.6 obtained by optimized sequential ion implantation on Er-implanted silica.
View Article and Find Full Text PDFSub-nanometric Au nanoclusters are known to act as very efficient sensitizers for the luminescent emission of Er(3+) ions in silica through a non-resonant broad-band energy-transfer mechanism. In the present work the energy-transfer process is investigated in detail by room temperature photoluminescence characterization of Er and Au co-implanted silica systems in which a different degree of coupling between Er(3+) ions and Au nanoclusters is obtained. The results allow us to definitely demonstrate the short-range nature of the interaction in agreement with non-radiative energy-transfer mechanisms.
View Article and Find Full Text PDFUltra-small molecule-like AuN nanoclusters made by a number of atoms N less than 30 were produced by ion implantation in silica substrates. Their room temperature photoluminescence properties in the visible and near-infrared range have been investigated and correlated with the Er sensitization effects observed in Er-Au co-implanted samples. The intense photoluminescence emission under 488 nm laser excitation occurs in three different spectral regions around 750 nm (band A), 980 nm (band B) and 1150 nm (band C) as a consequence of the formation of discrete energy levels in the electronic structure of the molecule-like AuN nanoclusters.
View Article and Find Full Text PDF