Publications by authors named "GianFranco Fornasini"

N-Acetyl-D-mannosamine (ManNAc) is an endogenous monosaccharide and precursor of N-acetylneuraminic acid (Neu5Ac), a critical sialic acid. ManNAc is currently under clinical development to treat GNE myopathy, a rare muscle-wasting disease. In this randomized, open-label, 2-sequence, crossover study, 16 healthy women and men were administered a single oral dose of ManNAc under fasting and fed conditions.

View Article and Find Full Text PDF

Objective: Systemic sclerosis (SSc) is characterized by fibrosis, vascular disease, and inflammation. Adenosine signaling plays a central role in fibroblast activation. We undertook this study to evaluate the therapeutic effects of adenosine depletion with PEGylated adenosine deaminase (PEG-ADA) in preclinical models of SSc.

View Article and Find Full Text PDF

Background: l-carnitine is an endogenous substance, vital in the transport of fatty acids across the inner mitochondrial membrane for oxidation. Disturbances in carnitine homeostasis can have a significant impact on human health; therefore, it is critical to define normal endogenous concentrations for l-carnitine and its esters to facilitate the diagnosis of carnitine deficiency disorders. This study was conducted to determine the normal concentrations of a number of carnitines in healthy adults using three analytical methods.

View Article and Find Full Text PDF

Aims: Patients requiring chronic haemodialysis may develop a secondary carnitine deficiency through dialytic loss of L-carnitine. A previous report has described the plasma concentrations of L-carnitine in 12 such patients under baseline conditions and after L-carnitine administration (20 mg kg(-1)). A three-compartment pharmacokinetic model was developed to describe these data to make inferences about carnitine supplementation in these patients.

View Article and Find Full Text PDF

Background: Trimethylamine (TMA) is a short-chain tertiary aliphatic amine that is derived from the diet either directly from the consumption of foods high in TMA or by the intake of food high in precursors to TMA, such as trimethylamine-N-oxide (TMNO), choline and L-carnitine. The clinical significance of TMA may be related to its potential to contribute to neurological toxicity and 'uraemic breath' in patients with end-stage renal disease (ESRD).

Methods: Concentrations of TMA and TMNO in plasma from 10 healthy adults (not on haemodialysis) and 10 adults with ESRD undergoing haemodialysis (pre- and post-dialysis) were determined by gas chromatography-mass spectrometry.

View Article and Find Full Text PDF

Background: Patients with end-stage renal disease (ESRD) undergoing long-term haemodialysis exhibit low L-carnitine and elevated acylcarnitine concentrations. This study evaluated endogenous concentrations of an array of acylcarnitines (carbon chain length up to 18) in healthy individuals and ESRD patients receiving haemodialysis, and examined the impact of a single haemodialysis session on acylcarnitine concentrations.

Methods: Blood samples were collected from 60 healthy subjects and 50 ESRD patients undergoing haemodialysis (pre- and post-dialysis samples).

View Article and Find Full Text PDF

Trimethylamine (TMA) is a volatile tertiary aliphatic amine that is derived from the diet either directly from the consumption of foods containing TMA, or by the intake of food containing precursors to TMA such as trimethylamine-N-oxide (TMNO), choline and L-carnitine. Following oral absorption in humans, TMA undergoes efficient N-oxidation to TMNO, a reaction catalyzed by the flavin-containing monooxygenase (FMO) isoform 3 enzyme. TMNO subsequently undergoes excretion in the urine, although, evidence also suggests that metabolic retro-reduction of TMNO can occur.

View Article and Find Full Text PDF

Background: End-stage renal disease (ESRD) patients undergoing hemodialysis treatment have reduced plasma L-carnitine levels; however, the relationship between dialysis age and carnitine status is poorly understood. This study examined the relationship between duration of dialysis and plasma and skeletal muscle concentrations of L-carnitine and its esters in ESRD patients.

Methods: Blood samples were collected from 21 patients at baseline and throughout the first 12 months of hemodialysis.

View Article and Find Full Text PDF

L-Carnitine is a naturally occurring compound that facilitates the transport of fatty acids into mitochondria for beta-oxidation. Exogenous L-carnitine is used clinically for the treatment of carnitine deficiency disorders and a range of other conditions. In humans, the endogenous carnitine pool, which comprises free L-carnitine and a range of short-, medium- and long-chain esters, is maintained by absorption of L-carnitine from dietary sources, biosynthesis within the body and extensive renal tubular reabsorption from glomerular filtrate.

View Article and Find Full Text PDF