Publications by authors named "Gian Paolo Bagnara"

Background/aims: Vitamin D deficiency is associated with endothelial dysfunction in uremic patients, possibly by the impairment in the number and function of endothelial progenitor cells (EPCs). In 89 hemodialysis patients, we investigated the factors associated with the number of circulating EPCs (CD34+/CD133+/KDR+ and CD34+/CD133-/KDR+ cells), the presence of VDR and the determinants of VDR expression on EPCs, in particular in calcitriol therapy.

Methods: EPC counts, percentages of VDR-positive EPCs and VDR expression were assessed by flow cytometry.

View Article and Find Full Text PDF

Background: HIV infection elicits the onset of a progressive immunodeficiency and also damages several other organs and tissues such as the CNS, kidney, heart, blood vessels, adipose tissue and bone. In particular, HIV infection has been related to an increased incidence of cardiovascular diseases and derangement in the structure of blood vessels in the absence of classical risk factors. The recent characterization of multipotent mesenchymal cells in the vascular wall, involved in regulating cellular homeostasis, suggests that these cells may be considered a target of HIV pathogenesis.

View Article and Find Full Text PDF

Background Aims: The beneficial activity of mesenchymal stromal cells (MSC) in allogeneic hematopietic stem cell transplantation requires correct use in terms of cell dose and timing of infusion and the identification of biomarkers for selection. The immunosuppressive bone marrow (BM)-derived MSC (BM-MSC) functions have been associated with the production of soluble HLA-G molecules (sHLA-G) via interleukin (IL)-10. We have established a reliable method for evaluating BM-MSC HLA-G expression without the influence of peripheral blood mononuclear cells (PBMC).

View Article and Find Full Text PDF

Background Aims: The presence of ectopic tissues in the pathologic artery wall raises the issue of whether multipotent stem cells may reside in the vasculature itself. Recently mesenchymal stromal cells (MSC) have been isolated from different human vascular segments (VW MSC), belying the previous view that the vessel wall is a relatively quiescent tissue.

Methods: Resident multipotent cells were recovered from fresh arterial segments (aortic arches, thoracic and femoral arteries) collected in a tissue-banking facility and used to establish an in situ and in vitro study of the stemness features and multipotency of these multidistrict MSC populations.

View Article and Find Full Text PDF

Growing interest in stem cell research has led to the development of a number of new methods for isolation. The lack of homogeneity in stem cell preparation blurs standardization, which however is recommended for successful applications. Among stem cells, mesenchymal stem cells (MSCs) are promising candidates for cell therapy applications.

View Article and Find Full Text PDF

Background Aims: Bone marrow (BM)- and adipose tissue (AT)-derived mesenchymal stromal cells (MSC) are currently under evaluation in phase III clinical trials for inflammatory bowel disease and other intestinal disease manifestations. The therapeutic efficacy of these treatments may derive from a combination of the differentiation, trophic and immunomodulatory abilities of the transplanted cells. We investigated intestinal tissues as sources of MSC: such cells may support tissue-specific functions and hold advantages for engraftment and contribution in the gastrointestinal environment.

View Article and Find Full Text PDF

New cell sorting methodologies, which are simple, fast, non-invasive, and able to isolate homogeneous cell populations, are needed for applications ranging from gene expression analysis to cell-based therapy. In particular, in the forefront of stem cell isolation, progenitor cells have to be separated under mild experimental conditions from complex heterogeneous mixtures prepared from human tissues. Most of the methodologies now employed make use of immunological markers.

View Article and Find Full Text PDF

Background: The interest in stem cell (SC) isolation from easily accessible clinical specimens is booming. The lack of homogeneity in pluri/multipotent SC preparation blurs standardization, which however is recommended for successful applications. Multipotent mesenchymal SCs (MSCs) in fact express a broad panel of surface antigens, which limit the possibility of sorting homogeneous preparations by using an immunotag-based method.

View Article and Find Full Text PDF

Thrombocytopenia with absent radii (TAR) syndrome is a rare autosomal recessive disease characterized by hypomegakaryocytic thrombocytopenia and bilateral radial aplasia. Its expression includes skeletal, hematologic, and cardiac system abnormalities. According to some authors, the association of disparate skeletal and hematologic abnormalities is related to simultaneous development of the heart, radii, and megakaryocytes at 6 to 8 weeks' gestation.

View Article and Find Full Text PDF

Biologic and clinical interest in human mesenchymal stromal cells (hMSC) has risen over the last years, mainly due to their immunosuppressive properties. In this study, we investigated the basis of immunomodulant possible variability using hMSC from different sources (amniotic membrane, chorion, and bone marrow from either healthy subjects or patients with hematological malignancies, HM) and having discordant positivity for several immunological markers. The CD90+ hMSC reduced lymphoproliferative response in phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMC) via sHLA-G and IL-10 up-modulation.

View Article and Find Full Text PDF

Adult multipotent stromal cells (MSCs), also known as mesenchymal stem cells, represent an important source of cells for the repair of a number of damaged tissues. Both bone marrow (BM)-derived and amniotic MSCs expressed detectable surface levels of two (tumor necrosis factor-related apoptosis-inducing ligand receptor 2 [TRAIL-R2] and TRAIL-R4) of four transmembrane TRAIL receptors. Although the best-characterized activity of TRAIL-R2 is the transduction of apoptotic signals, neither recombinant TRAIL (rTRAIL) nor infection with an adenovirus-expressing TRAIL induced cytotoxic effects on MSCs.

View Article and Find Full Text PDF

The incidence and prevalence of Crohn's disease (CD) and ulcerative colitis (UC), the two major forms of inflammatory bowel diseases (IBD), are rising in western countries. The modern hygienic lifestyle is probably at the root of a disease where, in genetically susceptible hosts, the intestinal commensal flora triggers dysregulated immune and inflammatory responses. Current therapies ranging from anti-inflammatory drugs to immunosuppressive regimens, remain inadequate.

View Article and Find Full Text PDF

Placental tissue draws great interest as a source of cells for regenerative medicine because of the phenotypic plasticity of many of the cell types isolated from this tissue. Furthermore, placenta, which is involved in maintaining fetal tolerance, contains cells that display immunomodulatory properties. These two features could prove useful for future cell therapy-based clinical applications.

View Article and Find Full Text PDF

Human mesenchymal stromal (stem) cells (hMSCs) isolated from adult bone marrow (BM-hMSCs) as well as amnion (AM-hMSCs) and chorion (CM-hMSCs) term placenta leaves were studied by transmission electron microscopy (TEM) to investigate their ultrastructural basic phenotype. At flow cytometry, the isolated cells showed a homogeneous expression of markers commonly used to identify hMSCs, i.e.

View Article and Find Full Text PDF

The clinical use of endothelial progenitor cells is hampered by difficulties in obtaining an adequate number of functional progenitors. This study aimed to establish whether human thoracic aortas harvested from healthy multiorgan donors can be a valuable source of angiogenic progenitors. Immunohistochemical tissue studies showed that two distinct cell populations with putative stem cell capabilities, one composed of CD34+ cells and the other of c-kit+ cells, are present in between the media and adventitia of human thoracic aortas.

View Article and Find Full Text PDF

We have developed a mixed ester of hyaluronan with butyric and retinoic acid (HBR) that acted as a novel cardiogenic/vasculogenic agent in human mesenchymal stem cells isolated from bone marrow, dental pulp, and fetal membranes of term placenta (FMhMSCs). HBR remarkably enhanced vascular endothelial growth factor (VEGF), KDR, and hepatocyte growth factor (HGF) gene expression and the secretion of the angiogenic, mitogenic, and antiapoptotic factors VEGF and HGF, priming stem cell differentiation into endothelial cells. HBR also increased the transcription of the cardiac lineage-promoting genes GATA-4 and Nkx-2.

View Article and Find Full Text PDF

Background: Term Amniotic membrane (AM) is a very attractive source of Mesenchymal Stem Cells (MSCs) due to the fact that this fetal tissue is usually discarded without ethical conflicts, leading to high efficiency in MSC recovery with no intrusive procedures. Here we confirmed that term AM, as previously reported in the literature, is an abundant source of hMSCs; in particular we further investigated the AM differentiation potential by assessing whether these cells may also be committed to the angiogenic fate. In agreement with the recommendation of the International Society for Cellular Therapy, the mesenchymal cells herein investigated were named Amniotic Membrane-human Mesenchymal Stromal Cells (AM-hMSC).

View Article and Find Full Text PDF

Background: Bone marrow mesenchymal stem cells (MSCs) are currently being investigated in preclinical and clinical settings because of their multipotent differentiative capacity or, alternatively, their immunosuppressive function. The aim of this study was to evaluate dental pulp (DP) as a potential source of MSCs instead of bone marrow (BM).

Methods: Flow cytometric analysis showed that DP-MSCs and BM-MSCs were equally SH2, SH3, SH4, CD29 and CD 166 positive.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs), known as matrixins, are Ca- and Zn-dependent endoproteinases involved in a wide variety of developmental and disease-associated processes, proving to be crucial protagonists in many physiological and pathological mechanisms. The ability of MMPs to alter, by limited proteolysis and through the fine control of tissue inhibitors of metalloproteinases, the activity or function of numerous proteins, enzymes, and receptors suggests that they are also involved in various important cellular functions during development. In this review, we focus on the differentiation of mesenchymal stem cells (including those of the myoblastic, osteoblastic, chondroblastic, neural, and apidoblastic lineages) and the possible, if unexpected, biological significance of MMPs in its regulation.

View Article and Find Full Text PDF

Expression of the T cell receptor (TCR) genes is not restricted to T lymphocytes. Human prostate and breast express a truncated TCR gamma transcript. In the mouse, TCR alpha (TCRA) and beta partial transcripts are expressed by mesenchymal cells and TCRA transcripts by epithelial cells of the kidney.

View Article and Find Full Text PDF

Background And Objectives: B1647 is a cell line derived from bone marrow cells of a patient with acute myeloid leukemia (M2) with a complete erythro-megakaryocytic phenotype and bears both k and p isoforms of c-mpl. Interestingly, spontaneous B1647 cell proliferation is significantly potentiated by thrombopoietin (TPO).

Design And Methods: We aimed to evaluate the proliferative signal transduction events following the activation of c-mpl and we stimulated B1647 cells with TPO 40 ng/mL for 3, 7, 15 and 30 minutes; cells were then lysed and whole lysates were immunoprecipitated with anti-phosphotyrosine antibodies.

View Article and Find Full Text PDF