Publications by authors named "Gian F De Nicola"

In-crystal fragment screening is a powerful tool to chemically probe the surfaces used by proteins to interact, and identify the chemical space worth exploring to design protein-protein inhibitors. A crucial prerequisite is the identification of a crystal form where the target area is exposed and accessible to be probed by fragments. Here we report a crystal form of the SARS-CoV-2 Receptor Binding Domain in complex with the CR3022 antibody where the ACE2 binding site on the Receptor Binding Domain is exposed and accessible.

View Article and Find Full Text PDF

Nowadays, it is possible to combine X-ray crystallography and fragment screening in a medium throughput fashion to chemically probe the surfaces used by proteins to interact and use the outcome of the screens to systematically design protein-protein inhibitors. To prove it, we first performed a bioinformatics analysis of the Protein Data Bank protein complexes, which revealed over 400 cases where the crystal lattice of the target in the free form is such that large portions of the interacting surfaces are free from lattice contacts and therefore accessible to fragments during soaks. Among the tractable complexes identified, we then performed single fragment crystal screens on two particular interesting cases: the Il1β-ILR and p38α-TAB1 complexes.

View Article and Find Full Text PDF

Inhibiting MAPK14 (p38α) diminishes cardiac damage in myocardial ischemia. During myocardial ischemia, p38α interacts with TAB1, a scaffold protein, which promotes p38α autoactivation; active p38α (pp38α) then transphosphorylates TAB1. Previously, we solved the X-ray structure of the p38α-TAB1 (residues 384-412) complex.

View Article and Find Full Text PDF

p38α mitogen-activated protein kinase is essential to cellular homeostasis. Two principal mechanisms to activate p38α exist. The first relies on dedicated dual-specificity kinases such as mitogen-activated protein kinase kinase (MAP2K) 3 (MKK3) or 6 (MKK6), which activate p38α by phosphorylating Thr180 and Tyr182 within the activation segment.

View Article and Find Full Text PDF

The kinase p38α MAPK (p38α) plays a pivotal role in many biological processes. p38α is activated by canonical upstream kinases that phosphorylate the activation region. The purpose of our study was to determine whether such activation may depend on redox-sensing cysteines within p38α.

View Article and Find Full Text PDF

p38α mitogen-activated protein kinase (p38α) is activated by a variety of mechanisms, including autophosphorylation initiated by TGFβ-activated kinase 1 binding protein 1 (TAB1) during myocardial ischemia and other stresses. Chemical-genetic approaches and coexpression in mammalian, bacterial and cell-free systems revealed that mouse p38α autophosphorylation occurs in cis by direct interaction with TAB1(371-416). In isolated rat cardiac myocytes and perfused mouse hearts, TAT-TAB1(371-416) rapidly activates p38 and profoundly perturbs function.

View Article and Find Full Text PDF

We report here the transmission of human prions to 18 new transgenic (Tg) mouse lines expressing 8 unique chimeric human/mouse prion proteins (PrP). Extracts from brains of two patients, who died of sporadic Creutzfeldt-Jakob disease (sCJD), contained either sCJD(MM1) or sCJD(VV2) prion strains and were used for inocula. Mice expressing chimeric PrP showed a direct correlation between expression level and incubation period for sCJD(MM1) prions irrespective of whether the transgene encoded methionine (M) or valine (V) at polymorphic residue 129.

View Article and Find Full Text PDF

While in most muscles contraction is triggered by calcium effluxes, insect flight muscles are also activated by mechanical stretch. We are interested in understanding the role that the troponin C protein, usually the calcium sensor, plays in stretch activation. In the flight muscles of Lethocerus, a giant water bug often used as a model system, there are two isoforms of TnC, F1 and F2, present in an approximately 10:1 ratio.

View Article and Find Full Text PDF

Muscle contraction is activated by two distinct mechanisms. One depends on the calcium influx, and the other is calcium-independent and activated by mechanical stress. A prototypical example of stretch activation is observed in insect muscles.

View Article and Find Full Text PDF