Positron Emission Tomography is a non-disruptive and high-sensitive digital imaging technique which allows to measure and non invasively the changes of metabolic and transport mechanisms in plants. When it comes to the early assessment of stress-induced alterations of plant functions, plant PET has the potential of a major breakthrough. The development of dedicated plant PET systems faces a series of technological and experimental difficulties, which make conventional clinical and preclinical PET systems not fully suitable to agronomy.
View Article and Find Full Text PDFFlowing plasma jets are increasingly investigated and used for surface treatments, including biological matter, and as soft ionization sources for mass spectrometry. They have the characteristic capability to transport energy from the plasma excitation region to the flowing afterglow, and therefore to a distant application surface, in a controlled manner. The ability to transport and deposit energy into a specimen is related to the actual energy transport mechanism.
View Article and Find Full Text PDFThe assessment of the radiological impact of decommissioning activities at a Nuclear Power Plant requires a detailed mapping of the distribution of radionuclides both in the environment surrounding the NPP and in its structural material. The detection of long-lived actinide isotopes and possibly the identification of their origin is particularly interesting and valuable if ultrasensitive measurement of the relative abundance of U isotopes is performed via Accelerator Mass Spectrometry (AMS). In this paper we present an investigation carried out on the structural materials of the Garigliano NPP aiming to determine the abundance of U in the various compartments of the plant buildings under decommissioning.
View Article and Find Full Text PDFAppl Radiat Isot
September 2015
The Accelerator Mass Spectrometry (AMS) is the most sensitive technique, compared either to the Inductively Coupled Plasma (ICP-MS) or Thermal Ionization (TI-MS) mass spectrometer, for the actinide (e.g. (236)U, (x)Pu isotopes) measurements.
View Article and Find Full Text PDFThe 3He(alpha,gamma)7Be reaction presently represents the largest nuclear uncertainty in the predicted solar neutrino flux and has important implications on the big bang nucleosynthesis, i.e., the production of primordial 7Li.
View Article and Find Full Text PDFThe fusion reactions 12C(12C,alpha)20Ne and 12C(12C,p)23Na have been studied from E=2.10 to 4.75 MeV by gamma-ray spectroscopy using a C target with ultralow hydrogen contamination.
View Article and Find Full Text PDF