We present images of Venus from the Wide-Field Imager for Parker Solar Probe (WISPR) telescope on board the Parker Solar Probe (PSP) spacecraft, obtained during PSP's third and fourth flybys of Venus on 2020 July 11 and 2021 February 20, respectively. Thermal emission from the surface is observed on the night side, representing the shortest wavelength observations of this emission ever, the first detection of the Venusian surface by an optical telescope observing below 0.8 μm.
View Article and Find Full Text PDFWe describe how environmental context can help determine whether oxygen (O) detected in extrasolar planetary observations is more likely to have a biological source. Here we provide an in-depth, interdisciplinary example of O biosignature identification and observation, which serves as the prototype for the development of a general framework for biosignature assessment. Photosynthetically generated O is a potentially strong biosignature, and at high abundance, it was originally thought to be an unambiguous indicator for life.
View Article and Find Full Text PDFIn the coming years and decades, advanced space- and ground-based observatories will allow an unprecedented opportunity to probe the atmospheres and surfaces of potentially habitable exoplanets for signatures of life. Life on Earth, through its gaseous products and reflectance and scattering properties, has left its fingerprint on the spectrum of our planet. Aided by the universality of the laws of physics and chemistry, we turn to Earth's biosphere, both in the present and through geologic time, for analog signatures that will aid in the search for life elsewhere.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2018
The early Earth's environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment.
View Article and Find Full Text PDFProxima Centauri b provides an unprecedented opportunity to understand the evolution and nature of terrestrial planets orbiting M dwarfs. Although Proxima Cen b orbits within its star's habitable zone, multiple plausible evolutionary paths could have generated different environments that may or may not be habitable. Here, we use 1-D coupled climate-photochemical models to generate self-consistent atmospheres for several evolutionary scenarios, including high-O, high-CO, and more Earth-like atmospheres, with both oxic and anoxic compositions.
View Article and Find Full Text PDFO and O have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O/O: CO and O.
View Article and Find Full Text PDF