Functional deficits in basal ganglia (BG) circuits contribute to cognitive and motor dysfunctions in alcohol use disorder. Chronic alcohol exposure alters synaptic function and neuronal excitability in the dorsal striatum, but it remains unclear how it affects BG output that is mediated by the substantia nigra pars reticulata (SNr). Here, we describe a neuronal subpopulation-specific synaptic organization of striatal and subthalamic (STN) inputs to the medial and lateral SNr.
View Article and Find Full Text PDFPersons that develop Alcohol Use Disorder (AUD) experience behavioral changes that include compulsion to seek and take alcohol despite its negative consequences on the person's psychosocial, health and economic spheres, inability to limit alcohol intake and a negative emotional/ motivational state that emerges during withdrawal. During all the stages of AUD executive functions, i.e.
View Article and Find Full Text PDFPresynaptic modulation is a fundamental process regulating synaptic transmission. Striatal indirect pathway projections originate from A2A-expressing spiny projection neurons (iSPNs), targeting the globus pallidus external segment (GPe) and control the firing of the tonically active GPe neurons via GABA release. It is unclear if and how the presynaptic G-protein-coupled receptors (GPCRs), GABA and CB1 receptors modulate iSPN-GPe projections.
View Article and Find Full Text PDFPathogenic mutations in the leucine-rich repeat kinase 2 () gene are frequent causes of familial Parkinson's Disease (PD), an increasingly prevalent neurodegenerative disease that affects basal ganglia circuitry. The cellular effects of the G2019S mutation in the gene, the most common pathological mutation, have not been thoroughly investigated. In this study we used middle-aged mice carrying the LRRK2-G2019S mutation (G2019S mice) to identify potential alterations in the neurophysiological properties and characteristics of glutamatergic synaptic transmission in basal ganglia output neurons, i.
View Article and Find Full Text PDFThe progressive degeneration of dopamine (DA) neurons in the substantia nigra compacta (SNc) leads to the emergence of motor symptoms in patients with Parkinson's disease (PD). To propose neuroprotective therapies able to slow or halt the progression of the disease, it is necessary to identify cellular alterations that occur before DA neurons degenerate and before the onset of the motor symptoms that characterize PD. Using electrophysiological, histochemical, and biochemical approaches, we have examined if glutamatergic synaptic transmission in DA neurons in the SNc and in the adjacent ventral tegmental area (VTA) was altered in middle-aged (10-12 months old) mice with the hG2019S point mutation (G2019S) in the leucine-rich repeat kinase 2 (LRRK2) gene.
View Article and Find Full Text PDFIn Parkinson's disease (PD) reduced levels of dopamine (DA) in the striatum lead to an abnormal circuit activity of the basal ganglia and an increased output through the substantia nigra pars reticulata (SNr) and the globus pallidus internal part. Synaptic inputs to the SNr shape its activity, however, the properties of glutamatergic synaptic transmission in this output nucleus of the basal ganglia in control and DA-depleted conditions are not fully elucidated. Using whole-cell patch-clamp recordings and pharmacological tools, we examined alterations in glutamatergic synaptic transmission in the SNr of a mouse model of PD, i.
View Article and Find Full Text PDF