The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols.
View Article and Find Full Text PDFRegenerative medicine for skeletal and cardiac muscles still constitutes a fascinating and ambitious frontier. In this perspective, understanding the possibilities of intrinsic cell plasticity, present in post-natal muscles, is vital to define and improve novel therapeutic strategies for acute and chronic diseases. In addition, many somatic stem cells are now crossing the boundaries of basic/translational research to enter the first clinical trials.
View Article and Find Full Text PDFThe synthetic purine reversine has been shown to possess a dual activity as it promotes the de-differentiation of adult cells, including fibroblasts, into stem-cell-like progenitors, but it also induces cell growth arrest and ultimately cell death of cancer cells, suggesting its possible application as an anti-cancer agent. Aim of this study was to investigate the mechanism underneath reversine selectivity in inducing cell death of cancer cells by a comparative analysis of its effects on several tumor cells and normal dermal fibroblasts. We found that reversine is lethal for all cancer cells studied as it induces cell endoreplication, a process that malignant cells cannot effectively oppose due to aberrations in cell cycle checkpoints.
View Article and Find Full Text PDFMesoangioblasts (MABs) are mesoderm-derived stem cells, associated with small vessels and originally described in the mouse embryonic dorsal aorta. Similar though not identical cells have been later identified and characterized from postnatal small vessels of skeletal muscle and heart. They have in common the expression of pericyte markers, the anatomical location, the ability to self-renew in culture, and to differentiate into various types of mesodermal lineages upon proper culture conditions.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are obtained from adult cells through overexpression of pluripotency factors. iPSCs share many features with embryonic stem cells (ESCs), circumventing ethical issues, and, noteworthy, match donor's genotype. iPSCs represent therefore a valuable tool for regenerative medicine.
View Article and Find Full Text PDFMesoangioblasts (MABs) are a subset of muscle-derived pericytes able to restore dystrophic phenotype in mice and dogs. However, their lifespan is limited and they undergo senescence after 25-30 population doublings. Recently, induced pluripotent stem cells (iPSCs) generated from reprogrammed fibroblasts have been demonstrated to have in vitro and in vivo myogenic potential when sorted for the SM/C-2.
View Article and Find Full Text PDFMembrane-bound sialidase NEU3, often referred to as the "ganglioside sialidase," has a critical regulatory function on the sialoglycosphingolipid pattern of the cell membrane, with an anti-apoptotic function, especially in cancer cells. Although other sialidases have been shown to be involved in skeletal muscle differentiation, the role of NEU3 had yet to be disclosed. Herein we report that NEU3 plays a key role in skeletal muscle differentiation by strictly modulating the ganglioside content of adjacent cells, with special regard to GM3.
View Article and Find Full Text PDF