Publications by authors named "Giacomo Nardi"

This study investigates the effects of natural inhibitors (pomegranate, algae, and tomato extracts) on the corrosion resistance of titanium (grade 2). To deepen understanding the inhibition mechanism, Molecular Dynamic (MD) and Monte Carlo (MC) simulations were employed to analyze adsorption behaviors and identify optimal adsorption sites on titanium oxide (TiO) surfaces for compounds within the inhibitors. Results indicate non-flat adsorption orientations, with pomegranate peel extract components showing superior inhibition capabilities, attributed to the formation of strong O-H chemical bonds with the TiO surface.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCR) are present at the cell surface in different conformational and oligomeric states. However, how these states impact GPCRs biological function and therapeutic targeting remains incompletely known. Here, we investigated this issue in living cells for the CC chemokine receptor 5 (CCR5), a major receptor in inflammation and the principal entry co-receptor for Human Immunodeficiency Viruses type 1 (HIV-1).

View Article and Find Full Text PDF

Dipicolinic acid (DPA), present in large amount in bacterial spores, has been proposed to act as an endogenous photosensitizer in spore photoproduct formation. The proposed mechanism involves a triplet-triplet energy transfer from DPA to thymine. However, up to now, no spectroscopic studies have been performed to determine the interaction between the endogenous compound and the nucleobase, probably due to its photolability in aqueous solutions.

View Article and Find Full Text PDF

Eukaryotic cells internalize cargos specifically through clathrin-mediated endocytosis (CME) or clathrin-independent endocytosis (CIE). EndophilinA2 was shown as preferentially implicated in CIE, although initially involved in CME. Here, we investigated the native interplay of endophilinA2 and dynamin2 during CME as compared to CIE.

View Article and Find Full Text PDF

Imatinib (IMT) is a promising tyrosine kinase inhibitor used in the treatment of some types of human cancer. It constitutes a successful example of rational drug design based on the optimization of the chemical structure to reach an improved pharmacological activity. Cutaneous reactions, such as increased photosensitivity or pseudoporphyria, are among the most common nonhematological IMT side effects; however, the molecular bases of these clinical observations have not been determined.

View Article and Find Full Text PDF

For many biological and biomedical studies, it is essential to detect the production of (1)O2 and quantify its production yield. Among the available methods, detection of the characteristic 1270-nm phosphorescence of singlet oxygen by time-resolved near-infrared (TRNIR) emission constitutes the most direct and unambiguous approach. An alternative indirect method is electron paramagnetic resonance (EPR) in combination with a singlet oxygen probe.

View Article and Find Full Text PDF

In this work, rosuvastatin has been used to gain insight into the molecular basis of statin photosensitization. This lipid-lowering drug, also known as "superstatin", contains a 2-vinylbiphenyl-like moiety and has been previously described to decompose under solar irradiation, yielding stable dihydrophenanthrene analogues. During photophysical characterization of rosuvastatin, only a long-lived transient at ca.

View Article and Find Full Text PDF