Publications by authors named "Giacomo Melani"

Computational modeling of catalytic processes at gas/solid interfaces plays an increasingly important role in chemistry, enabling accelerated materials and process optimization and rational design. However, efficiency, accuracy, thoroughness, and throughput must be enhanced to maximize its practical impact. By combining interpolation of DFT energetics via highly accurate Machine-Learning Potentials with conformal techniques for building the training database, we present here an original approach (that we name Conformal Sampling of Catalytic Processes, CSCP), to accelerate and achieve an accurate and thorough sampling of novel systems by exporting existing information on a worked-out case.

View Article and Find Full Text PDF

Photoanodes used in a water-splitting photoelectrochemical cell are almost always paired with an oxygen evolution catalyst (OEC) to efficiently utilize photon-generated holes for water oxidation because the surfaces of photoanodes are typically not catalytic for the water oxidation reaction. Suppressing electron-hole recombination at the photoanode/OEC interface is critical for the OEC to maximally utilize the holes reaching the interface for water oxidation. In order to explicitly demonstrate and investigate how the detailed features of the photoanode/OEC interface affect interfacial charge transfer and photocurrent generation for water oxidation, we prepared two BiVO(010)/FeOOH photoanodes with different Bi:V ratios at the outermost layer of the BiVO interface (close to stoichiometric vs Bi-rich) while keeping all other factors in the bulk BiVO and FeOOH layers identical.

View Article and Find Full Text PDF

The design of low-dimensional organic-inorganic interfaces for the next generation of opto-electronic applications requires in-depth understanding of the microscopic mechanisms ruling electronic interactions in these systems. In this work, we present a first-principles study based on density-functional theory inspecting the structural, energetic, and electronic properties of five molecular donors and acceptors adsorbed on freestanding hexagonal boron nitride (hBN) and molybdenum disulfide (MoS) monolayers. All considered interfaces are stable, due to the crucial contribution of dispersion interactions, which are maximized by the overall flat arrangement of the physisorbed molecules on both substrates.

View Article and Find Full Text PDF

Vibrational relaxation of adsorbates is a sensitive tool to probe energy transfer at gas/solid and liquid/solid interfaces. The most direct way to study relaxation dynamics uses time-resolved spectroscopy. Here we report on a non-equilibrium ab initio molecular dynamics (NE-AIMD) methodology to model vibrational relaxation of OH vibrations on a hydroxylated, water-covered α-AlO(0001) surface.

View Article and Find Full Text PDF

Water can adsorb molecularly or dissociatively onto different sites of metal oxide surfaces. These adsorption sites can be disentangled using surface-sensitive vibrational spectroscopy. Here, we model Vibrational Sum Frequency (VSF) spectra for various forms of dissociated, deuterated water on a reconstructed, Al-terminated α-AlO(0001) surface at submonolayer coverages (the so-called 1-2, 1-4, and 1-4' modes).

View Article and Find Full Text PDF

Using gradient- and dispersion-corrected density functional theory in connection with ab initio molecular dynamics and efficient, parametrized Velocity-Velocity Autocorrelation Function (VVAF) methodology, we study the vibrational spectra (Vibrational Sum Frequency, VSF, and infrared, IR) of hydroxylated α-AlO(0001) surfaces with and without additional water. Specifically, by considering a naked hydroxylated surface and the same surface with a particularly stable, "ice-like" hexagonal water later allows us to identify and disentangle main spectroscopic bands of OH bonds, their orientation and dynamics, and the role of water adsorption. In particular, we assign spectroscopic signals around 3700 cm as being dominated by perpendicularly oriented non-hydrogen bonded aluminol groups, with and without additional water.

View Article and Find Full Text PDF

In this work we investigate whether and how a molecule undergoing a nonadiabatic transition can show different energy mean values and distributions in the two electronic states that are populated. We analyze three models, of which models I and II mimick the limiting cases of almost adiabatic and almost diabatic regimes, respectively, and are solvable by first-order perturbation theory. Model III represents realistically the photodissociation of a diatomic molecule and is treated numerically.

View Article and Find Full Text PDF