The inhibition of steroidogenic cytochrome P450 enzymes has been shown to play a central role in the management of life-threatening diseases such as cancer, and indeed potent inhibitors of CYP19 (aromatase) and CYP17 (17α hydroxylase/17,20 lyase) are currently used for the treatment of breast, ovarian and prostate cancer. In the last few decades CYP11B1 (11-β-hydroxylase) and CYP11B2 (aldosterone synthase), key enzymes in the biosynthesis of cortisol and aldosterone, respectively, have been also investigated as targets for the identification of new potent and selective agents for the treatment of Cushing's syndrome, impaired wound healing and cardiovascular diseases. In an effort to improve activity and synthetic feasibility of our different series of xanthone-based CYP11B1 and CYP11B2 inhibitors, a small series of imidazolylmethylbenzophenone-based compounds, previously reported as CYP19 inhibitors, was also tested on these new targets, in order to explore the role of a more flexible scaffold for the inhibition of CYP11B1 and -B2 isoforms.
View Article and Find Full Text PDF