Publications by authors named "Giacomo Dimarco"

In this paper we introduce a space-dependent multiscale model to describe the spatial spread of an infectious disease under uncertain data with particular interest in simulating the onset of the COVID-19 epidemic in Italy. While virus transmission is ruled by a SEIAR type compartmental model, within our approach the population is given by a sum of commuters moving on a extra-urban scale and non commuters interacting only on the smaller urban scale. A transport dynamics of the commuter population at large spatial scales, based on kinetic equations, is coupled with a diffusion model for non commuters at the urban scale.

View Article and Find Full Text PDF

We develop a mathematical framework to study the economic impact of infectious diseases by integrating epidemiological dynamics with a kinetic model of wealth exchange. The multiagent description leads to the study of the evolution over time of a system of kinetic equations for the wealth densities of susceptible, infectious, and recovered individuals, whose proportions are driven by a classical compartmental model in epidemiology. Explicit calculations show that the spread of the disease seriously affects the distribution of wealth, which, unlike the situation in the absence of epidemics, can converge toward a stationary state with a bimodal form.

View Article and Find Full Text PDF

This paper investigates cell proliferation dynamics in small tumor cell aggregates using an individual-based model (IBM). The simulation model is designed to study the morphology of the cell population and of the cell lineages as well as the impact of the orientation of the division plane on this morphology. Our IBM model is based on the hypothesis that cells are incompressible objects that grow in size and divide once a threshold size is reached, and that newly born cell adhere to the existing cell cluster.

View Article and Find Full Text PDF