Poly(styrene--maleic acid) or SMA and its derivatives, a family of synthetic amphipathic copolymers, are increasingly used to directly solubilize cell membranes to functionally reconstitute membrane proteins in native-like copolymer-lipid nanodiscs. Although these copolymers act, de facto, like a "macromolecular detergent", the polymer-based lipid-nanodiscs has been demonstrated to be an excellent membrane mimetic for structural and functional studies of membrane proteins and their complexes by a variety of biophysical and biochemical approaches. In many studies reported in the literature, the choice of the right SMA formulation can depend on a number of factors, and the experimental conditions are typically developed according to a trial-and-error process since each studied system requires adapted protocols.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2020
Lipid-nanodiscs have been shown to be an exciting innovation as a membrane-mimicking system for studies on membrane proteins by a variety of biophysical techniques, including NMR spectroscopy. Although NMR spectroscopy is unique in enabling the atomic-resolution investigation of dynamic structures of membrane-associated molecules, it, unfortunately, suffers from intrinsically low sensitivity. The long data acquisition often used to enhance the sensitivity is not desirable for sensitive membrane proteins.
View Article and Find Full Text PDFParamagnetic relaxation enhancement (PRE) is commonly used to speed up spin lattice relaxation time (T ) for rapid data acquisition in NMR structural studies. Consequently, there is significant interest in novel paramagnetic labels for enhanced NMR studies on biomolecules. Herein, we report the synthesis and characterization of a modified poly(styrene-co-maleic acid) polymer which forms nanodiscs while showing the ability to chelate metal ions.
View Article and Find Full Text PDFSolid State Nucl Magn Reson
October 2019
NMR spectroscopy is a powerful experimental technique to study biological systems at the atomic resolution. However, its intrinsic low sensitivity results in long acquisition times that in extreme cases lasts for days (or even weeks) often exceeding the lifetime of the sample under investigation. Different paramagnetic agents have been used in an effort to decrease the spin-lattice (T) relaxation times of the studied nuclei, which are the main cause for long acquisition times necessary for signal averaging to enhance the signal-to-noise ratio of NMR spectra.
View Article and Find Full Text PDFMembrane mimetics are essential to study the structure, dynamics and function of membrane-associated proteins by biophysical and biochemical approaches. Among various membrane mimetics that have been developed and demonstrated for studies on membrane proteins, lipid nanodiscs are the latest developments in the field and are increasingly used for various applications. While lipid-nanodiscs can be formed using an amphipathic membrane scaffold protein (MSP), peptide, or synthetic polymer, the synthetic polymer based nanodiscs exhibit unique advantages because of the ability to functionalize them for various applications.
View Article and Find Full Text PDFPolymer nanodisks have shown great potential as membrane mimetics that enable the study of functional membrane protein structural biology and also have a wider application in other fields such as drug delivery. To achieve these research goals, the ability to have a cheap, simple, fully customizable platform for future nanodisks technology applications is paramount. Here, a facile functionalization of polyacrylic acid (PAA) with varying hydrophobic groups that form nanodisks at different sizes is successfully demonstrated.
View Article and Find Full Text PDFRetraction of 'Polymer nanodiscs and macro-nanodiscs of a varying lipid composition' by Venkata Sudheer Kumar Ramadugu et al., Chem. Commun.
View Article and Find Full Text PDFPolymer lipid nanodiscs have enabled some exciting structural biology and nanobiotechnology applications. The use of a small molecular weight polymer (SMA-EA) has been demonstrated to dramatically increase the size of nanodiscs (up to ∼60 nm diameter). Here, we report the first demonstration of the formation of macro-nanodiscs for a variety of lipids, and solid-state NMR experiments utilizing their magnetic-alignment properties.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2017
Polymer-based nanodiscs are valuable tools in biomedical research that can offer a detergent-free solubilization of membrane proteins maintaining their native lipid environment. Herein, we introduce a novel ca. 1.
View Article and Find Full Text PDFOur knowledge of the molecular events underlying type 2 diabetes mellitus-a protein conformational disease characterized by the aggregation of islet amyloid polypeptide (IAPP) in pancreatic β cells-is limited. However, amyloid-mediated membrane damage is known to play a key role in IAPP cytotoxicity, and therefore the effects of lipid composition on modulating IAPP-membrane interactions have been the focus of intense research. In particular, membrane cholesterol content varies with aging and consequently with adverse environmental factors such as diet and lifestyle, but its role in the development of the disease is controversial.
View Article and Find Full Text PDF