Publications by authors named "Giacomo Boracchi"

We address the problem of detecting distribution changes in a novel batch-wise and multimodal setup. This setup is characterized by a stationary condition where batches are drawn from potentially different modalities among a set of distributions in [Formula: see text] represented in the training set. Existing change detection (CD) algorithms assume that there is a unique-possibly multipeaked-distribution characterizing stationary conditions, and in batch-wise multimodal context exhibit either low detection power or poor control of false positives.

View Article and Find Full Text PDF

The number of daily credit card transactions is inexorably growing: the e-commerce market expansion and the recent constraints for the Covid-19 pandemic have significantly increased the use of electronic payments. The ability to precisely detect fraudulent transactions is increasingly important, and machine learning models are now a key component of the detection process. Standard machine learning techniques are widely employed, but inadequate for the evolving nature of customers behavior entailing continuous changes in the underlying data distribution.

View Article and Find Full Text PDF

Detecting frauds in credit card transactions is perhaps one of the best testbeds for computational intelligence algorithms. In fact, this problem involves a number of relevant challenges, namely: concept drift (customers' habits evolve and fraudsters change their strategies over time), class imbalance (genuine transactions far outnumber frauds), and verification latency (only a small set of transactions are timely checked by investigators). However, the vast majority of learning algorithms that have been proposed for fraud detection rely on assumptions that hardly hold in a real-world fraud-detection system (FDS).

View Article and Find Full Text PDF

We present hierarchical change-detection tests (HCDTs), as effective online algorithms for detecting changes in datastreams. HCDTs are characterized by a hierarchical architecture composed of a detection layer and a validation layer. The detection layer steadily analyzes the input datastream by means of an online, sequential CDT, which operates as a low-complexity trigger that promptly detects possible changes in the process generating the data.

View Article and Find Full Text PDF

Just-in-time (JIT) classifiers operate in evolving environments by classifying instances and reacting to concept drift. In stationary conditions, a JIT classifier improves its accuracy over time by exploiting additional supervised information coming from the field. In nonstationary conditions, however, the classifier reacts as soon as concept drift is detected; the current classification setup is discarded and a suitable one activated to keep the accuracy high.

View Article and Find Full Text PDF

We propose a powerful video filtering algorithm that exploits temporal and spatial redundancy characterizing natural video sequences. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering, where a higher dimensional transform-domain representation of the observations is leveraged to enforce sparsity, and thus regularize the data: 3-D spatiotemporal volumes are constructed by tracking blocks along trajectories defined by the motion vectors. Mutually similar volumes are then grouped together by stacking them along an additional fourth dimension, thus producing a 4-D structure, termed group, where different types of data correlation exist along the different dimensions: local correlation along the two dimensions of the blocks, temporal correlation along the motion trajectories, and nonlocal spatial correlation (i.

View Article and Find Full Text PDF

When dealing with motion blur there is an inevitable trade-off between the amount of blur and the amount of noise in the acquired images. The effectiveness of any restoration algorithm typically depends on these amounts, and it is difficult to find their best balance in order to ease the restoration task. To face this problem, we provide a methodology for deriving a statistical model of the restoration performance of a given deblurring algorithm in case of arbitrary motion.

View Article and Find Full Text PDF

Classification systems meant to operate in nonstationary environments are requested to adapt when the process generating the observed data changes. A straightforward form of adaptation implementing the instance selection approach suggests releasing the obsolete data onto which the classifier is configured by replacing it with novel samples before retraining. In this direction, we propose an adaptive classifier based on the intersection of confidence intervals rule for detecting a possible change in the process generating the data as well as identifying the new data to be used to configure the classifier.

View Article and Find Full Text PDF

In this paper we consider the restoration of images corrupted by both uniform motion blur and Poissonian noise. We formulate an image formation model that explicitly takes into account the length of the blur point-spread function and the noise level as functions of the exposure time. Further, we present an analysis of the achievable restoration performance by showing how the root mean squared error varies with respect to the exposure time.

View Article and Find Full Text PDF