Production of rapid movement sequences relies on preparation before (preplanning) and during (online planning) movement. Here, we compared these processes and asked whether they recruit different cortical areas. Human participants performed three single-finger and three multifinger sequences in a delayed-movement paradigm while undergoing a 7 T functional MRI.
View Article and Find Full Text PDFReal-world actions often comprise a series of movements that cannot be entirely planned before initiation. When these actions are executed rapidly, the planning of multiple future movements needs to occur simultaneously with the ongoing action. How the brain solves this task remains unknown.
View Article and Find Full Text PDFWhen performing movements in rapid succession, the brain needs to coordinate ongoing execution with the preparation of an upcoming action. Here we identify the processes and brain areas involved in this ability of online preparation. Human participants (both male and female) performed pairs of single-finger presses or three-finger chords in rapid succession, while 7T fMRI was recorded.
View Article and Find Full Text PDFMotor planning plays a critical role in producing fast and accurate movement. Yet, the neural processes that occur in human primary motor and somatosensory cortex during planning, and how they relate to those during movement execution, remain poorly understood. Here, we used 7T functional magnetic resonance imaging and a delayed movement paradigm to study single finger movement planning and execution.
View Article and Find Full Text PDFWhen performing a long chain of actions in rapid sequence, future movements need to be planned concurrently with ongoing action. However, how far ahead we plan, and whether this ability improves with practice, is currently unknown. Here, we designed an experiment in which healthy volunteers produced sequences of 14 finger presses quickly and accurately on a keyboard in response to numerical stimuli.
View Article and Find Full Text PDFBeyond being essential for long-term motor-skill development, movement repetition has immediate benefits on performance, increasing speed and accuracy of a second execution. While repetition effects have been reported for single reaching movements, it has yet to be determined whether they also occur for movement sequences, and what aspects of sequence production are improved. We addressed these questions in two behavioral experiments using a discrete sequence production (DSP) task in which human volunteers had to perform short sequences of finger movements.
View Article and Find Full Text PDFThe ability to perform complex sequences of movements quickly and accurately is critical for many motor skills. Although training improves performance in a large variety of motor sequence tasks, the precise mechanisms behind such improvements are poorly understood. Here we investigated the contribution of single-action selection, sequence preplanning, online planning, and motor execution to performance in a discrete sequence production task.
View Article and Find Full Text PDFDifferent contexts require us either to react immediately, or to delay (or suppress) a planned movement. Previous studies that aimed at decoding movement plans typically dissociated movement preparation and execution by means of delayed-movement paradigms. Here we asked whether these results can be generalized to the planning and execution of immediate movements.
View Article and Find Full Text PDFUnlabelled: During movement planning, brain activity within parietofrontal networks encodes information about upcoming actions that can be driven either externally (e.g., by a sensory cue) or internally (i.
View Article and Find Full Text PDFAction understanding requires a many-to-one mapping of perceived input onto abstract representations that generalize across concrete features. It is debated whether such abstract action concepts are encoded in ventral premotor cortex (PMv; motor hypothesis) or, alternatively, are represented in lateral occipitotemporal cortex (LOTC; cognitive hypothesis). We used fMRI-based multivoxel pattern analysis to decode observed actions at concrete and abstract, object-independent levels of representation.
View Article and Find Full Text PDF