Publications by authors named "Gi-Baek Lee"

Flavonols effectively scavenge the reactive nitrogen species (RNS) and reactive oxygen species (ROS) and act as immune-enhancing, anti-inflammatory, anti-diabetic, and anti-carcinogenic agents. Here, we explored the comparative antioxidant and anti-inflammatory properties of plant-originating flavonols, like quercetin, rutin, and troxerutin against acetylsalicylic acid. Quercetin and rutin showed a high ability to remove active ROS, but troxerutin and acetylsalicylic acid exhibited little such function.

View Article and Find Full Text PDF

Aims: Protease-activated receptor 2 (PAR2), a type of G protein-coupled receptor (GPCR), plays a significant role in pathophysiological conditions such as inflammation. A synthetic peptide SLIGRL-NH (SLIGRL) can activate PAR2, while FSLLRY-NH (FSLLRY) is an antagonist. A previous study showed that SLIGRL activates both PAR2 and mas-related G protein-coupled receptor C11 (MrgprC11), a different type of GPCR expressed in sensory neurons.

View Article and Find Full Text PDF

Quercetin (Qu) is a dietary antioxidant and a member of flavonoids in the plant polyphenol family. Qu has a high ability to scavenge reactive oxygen species (ROS) and reactive nitrogen species (RNS) molecules; hence, exhibiting beneficial effects in preventing obesity, diabetes, cancer, cardiovascular diseases, and inflammation. However, quercetin has low bioavailability due to poor water solubility, low absorption, and rapid excretion from the body.

View Article and Find Full Text PDF

With recent rapid increases in Cu resistivity, RC delay has become an important issue again. Co, which has a low electron mean free path, is being studied as beyond Cu metal and is expected to minimize this increase in resistivity. However, extrinsic time-dependent dielectric breakdown has been reported for Co interconnects.

View Article and Find Full Text PDF

The electrochemical CO reduction reaction (CORR), which converts CO into value-added feedstocks and renewable fuels, has been increasingly studied as a next-generation energy and environmental solution. Here, we report that single-atom metal sites distributed around active materials can enhance the CORR performance by controlling the Lewis acidity-based local CO concentration. By utilizing the oxidation Gibbs free energy difference between silver (Ag), zinc (Zn), and carbon (C), we can produce Ag nanoparticle-embedded carbon nanofibers (CNFs) where Zn is atomically dispersed by a one-pot, self-forming thermal calcination process.

View Article and Find Full Text PDF

The oxygen evolution reaction (OER) is the key reaction in water splitting systems, but compared with the hydrogen evolution reaction (HER), the OER exhibits slow reaction kinetics. In this work, boron doping into nickel-iron layered double hydroxide (NiFe LDH) was evaluated for the enhancement of OER electrocatalytic activity. To fabricate boron-doped NiFe LDH (B:NiFe LDH), gaseous boronization, a gas-solid reaction between boron gas and NiFe LDH, was conducted at a relatively low temperature.

View Article and Find Full Text PDF

Both high activity and mass production potential are important for bifunctional electrocatalysts for overall water splitting. Catalytic activity enhancement was demonstrated through the formation of CoS nanoparticles with mono-phase and extremely porous structures. To fabricate porous structures at the nanometer scale, Co-based metal-organic frameworks (MOFs), namely a cobalt Prussian blue analogue (Co-PBA, Co[Co(CN)]), was used as a porous template for the CoS.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a novel method for controlling the phase transitions in transition metal dichalcogenides (TMDs) by utilizing anion extraction, which enables easier and more efficient synthesis of tunable nanomaterials.
  • The researchers focus on molybdenum disulfide (MoS) and demonstrate that sulfur vacancies created through this method facilitate the conversion from the stable 2H phase to the metastable 1T phase without needing cation insertion.
  • This technique also applies to tungsten disulfide (WS) and highlights the potential of gas-solid reactions for creating various polymorphs in 2D TMDs, paving the way for future applications such as improved catalysts in energy production.
View Article and Find Full Text PDF

Amorphous oxide semiconductor (AOS)-based Schottky diodes have been utilized for selectors in crossbar array memories to improve cell-to-cell uniformity with a low-temperature process. However, thermal instability at interfaces between the AOSs and metal electrodes can be a critical issue for the implementation of reliable Schottky diodes. Under post-fabrication annealing, an excessive redox reaction at the ohmic interface can affect the bulk region of the AOSs, inducing an electrical breakdown of the device.

View Article and Find Full Text PDF