Angew Chem Int Ed Engl
September 2022
The design of efficient non-noble metal catalysts for CO hydrogenation to fuels and chemicals is desired yet remains a challenge. Herein, we report that single Mo atoms with a MoN (pyrrolic) moiety enable remarkable CO adsorption and hydrogenation to CO, as predicted by density functional theory studies and evidenced by a high and stable conversion of CO reaching about 30.4 % with a CO selectivity of almost 100 % at 500 °C and very low H partial pressure.
View Article and Find Full Text PDFAlloy structures with high catalytic surface areas and tunable surface energies can lead to high catalytic selectivity and activities. Herein, the synthesis of sponge-like Pd Pb multiframes (Pd Pb MFs) is reported by using the thermodynamically driven phase segregation, which exhibit high selectivity (93%) for the conversion of furfural to furfuryl alcohol (FOL) under mild conditions. The excellent catalytic performance of the Pd Pb MF catalysts is attributed to the high surface area and optimized surface energy of the catalyst, which is associated with the introduction of Pb to Pd.
View Article and Find Full Text PDFElectron selective layers are important to the efficiency, stability and hysteresis of perovskite solar cells. Photo-annealing is a low-cost, roll-to-roll-compatible process that can be applied to the post-treatment fabrication of sol-gel based metal oxide layers. Here, we fabricate an amorphous titanium oxide electron selective layer at a low temperature in a dry atmosphere using a UV light annealing system and compare it with a thermal annealing process.
View Article and Find Full Text PDFPhotovoltaic technologies based on perovskite absorber materials have led this optoelectronic field into a brand-new horizon. However, the present antisolvents used in the one-step spin-coating method always encounter problems with the very narrow process window. Herein, anisole is introduced into the one-step spin-coating method, and the technology is developed to fabricate perovskite thin films with ultrawide processing window with a dimethylformamide (DMF):dimethyl sulfoxide (DMSO) ratio varying from 6:4 to 9:1 in the precursor solution, anisole dripping time ranging from 5 to 25 s, and an antisolvent volume varying from 0.
View Article and Find Full Text PDF