CRISPR-Cas systems serve as adaptive immune systems in bacteria and archaea, protecting against phages and other mobile genetic elements. However, phages and archaeal viruses have developed countermeasures, employing anti-CRISPR (Acr) proteins to counteract CRISPR-Cas systems. Despite the revolutionary impact of CRISPR-Cas systems on genome editing, concerns persist regarding potential off-target effects.
View Article and Find Full Text PDFCRISPR-Cas systems are adaptive immune systems in bacteria and archaea that provide resistance against phages and other mobile genetic elements. To fight against CRISPR-Cas systems, phages and archaeal viruses encode anti-CRISPR (Acr) proteins that inhibit CRISPR-Cas systems. The expression of acr genes is controlled by anti-CRISPR-associated (Aca) proteins encoded within acr-aca operons.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
January 2022
CRISPR-Cas systems are well known host defense mechanisms that are conserved in bacteria and archaea. To counteract CRISPR-Cas systems, phages and viruses have evolved to possess multiple anti-CRISPR (Acr) proteins that can inhibit the host CRISPR-Cas system via different strategies. The expression of acr genes is controlled by anti-CRISPR-associated (Aca) proteins that bind to an upstream promoter and regulate the expression of acr genes during transcription.
View Article and Find Full Text PDFPeptidoglycan digestion by murein-degrading enzymes is a critical process in bacterial cell growth and/or cell division. The membrane-bound lytic murein transglycosylase A (MltA) is a murein-degrading enzyme; it catalyzes the cleavage of the β-1,4-glycosidic linkage between -acetylmuramic acid and -acetylglucosamine in peptidoglycans. Although substrate recognition and cleavage by MltA have been examined by previous structural and mutagenesis studies, the overall mechanism of MltA in conjunction with other functionally related molecules on the outer membrane of bacterial cells for peptidoglycan degradation has remained elusive.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeats (CRISPRs)-CRISPR-associated protein systems are bacterial and archaeal defense mechanisms against invading elements such as phages and viruses. To overcome these defense systems, phages and viruses have developed inhibitors called anti-CRISPRs (Acrs) that are capable of inhibiting the host CRISPR-Cas system via different mechanisms. Although the inhibitory mechanisms of AcrIIC1, AcrIIC2, and AcrIIC3 have been revealed, the inhibitory mechanisms of AcrIIC4 and AcrIIC5 have not been fully understood and structural data are unavailable.
View Article and Find Full Text PDFFEBS Open Bio
December 2020
Prokaryotic adaptive immunity by CRISPR-Cas systems, which confer resistance to foreign genetic elements, has been used by bacteria to combat viruses. To cope, viruses evolved multiple anti-CRISPR proteins, which can inhibit system function through various mechanisms. Although the structures and mechanisms of several anti-CRISPR proteins have been elucidated, those of the AcrIF9 family have not yet been identified.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2020
As a result of bacterial infection with viruses, bacteria have developed CRISPR-Cas as an adaptive immune system, which allows them to destroy the viral genetic material introduced via infection. However, viruses have also evolved to develop multiple anti-CRISPR proteins, which are capable of inactivating the CRISPR-Cas adaptive immune system to combat bacteria. In this study, we aimed to elucidate the molecular mechanisms associated with anti-CRISPR proteins by determining a high-resolution crystal structure (1.
View Article and Find Full Text PDFConserved immune cell signaling in fish was recently highlighted by the identification of various immune cell signaling molecules. Tumor necrosis factor (TNF) receptor-associated factor (TRAF) proteins are critical adaptor molecules in immune cell signaling and contain E3 ubiquitin ligase activity. Here, we report the first crystal structure of the TRAF5 TRAF domain from the black rockcod (Notothenia coriiceps; ncTRAF5).
View Article and Find Full Text PDFHuman transglutaminase 2 (TGase2) has various functions, including roles in various cellular processes such as apoptosis, development, differentiation, wound healing, and angiogenesis, and is linked to many diseases such as cancer. Although TGase2 has been considered an optimized drug target for the treatment of cancer, fibrosis, and neurodegenerative disorders, it has been difficult to generate TGase2-targeted drugs for clinical use because of the relatively flat and broad active site on TGase2. To design more specific and powerful inhibitors, detailed structural information about TGase2 complexed with various effector and inhibitor molecules is required.
View Article and Find Full Text PDFThe successful enzymatic synthesis of various ganglioside-related oligosaccharides requires many available glycan-processing enzymes. However, the number of available glycan-processing enzymes remains limited. In this study, the full-length CgtA43456 (β-(1→4)-N-acetylgalactosaminyltransferase) and CgtB11168 (β-(1→3)-galactosyltransferase) were successfully produced from Escherichia coli through the optimization of E.
View Article and Find Full Text PDFTransglutaminase 2 (TG2) is a Ca-dependent enzyme, which regulates various cellular processes by catalyzing protein crosslinking or polyamination. Intracellular TG2 is activated and inhibited by Ca and GTP binding, respectively. Although aberrant TG2 activation has been implicated in the pathogenesis of diverse diseases, including cancer and degenerative and fibrotic diseases, the structural basis for the regulation of TG2 by Ca and GTP binding is not fully understood.
View Article and Find Full Text PDF