Human butyrylcholinesterase hydrolyzes long chain dicholine esters more rapidly than short chain dicholine esters. The active site of butyrylcholinesterase is deeply buried within the enzyme molecule and there is limited space for binding of large compounds. Our goal was to understand how butyrylcholinesterase accommodates long chain dicholine esters to make them better substrates than short chain dicholine esters.
View Article and Find Full Text PDFOur goal was to design, synthesize, and evaluate new cholinesterase inhibitors. Fourteen dehydroamino acids esterified to choline and to its ternary analog were synthesized by a new method that gave a yield of 84-93%. The potency of the amino acid ester derivatives was tested by measuring K(i) values for inhibition of human red cell acetylcholinesterase and human plasma butyrylcholinesterase.
View Article and Find Full Text PDF