This paper proposes a new method for short-term electric load forecasting using a Ridgelet Neural Network (RNN) combined with a wavelet transform and optimized by a Self-Adapted (SA) Kho-Kho algorithm (SAKhoKho). The aim of this method is to improve the accuracy and reliability of electric load forecasting, which is essential for the planning and operation of competitive electrical networks. The proposed method uses the Wavelet Transform (WT) to decompose the load data into different frequency components and applies the RNN to each component separately.
View Article and Find Full Text PDFProton Exchange Membrane Fuel Cells (PEMFCs) are promising sources of clean and renewable energy, but their performance and efficiency depend on an accurate modeling and identification of their system parameters. However, existing methods for PEMFC modeling suffer from drawbacks, such as slow convergence, high computational cost, and low accuracy. To address these challenges, this research work proposes an enhanced approach that combines a modified version of the SqueezeNet model, a deep learning architecture that reduces the number of parameters and computations, and a new optimization algorithm called the Modified Transient Search Optimization (MTSO) Algorithm, which improves the exploration and exploitation abilities of the search process.
View Article and Find Full Text PDF