Background: Ischemic stroke recovery is poor in diabetic mellitus (DM). Vanadium compounds (vanadium) relieve DM signs, but their influences on cerebral ischemia/reperfusion injury (I/RI) are inconclusive. Herein, the intensity of I/RI was inspected in vanadium-treated DM rats.
View Article and Find Full Text PDFIt is well-known that patients with diabetes mellitus have worse clinical outcomes following acute ischemic stroke. The intensifying effects of diabetes on ischemic brain injury have been shown to be mostly due to hyperglycemia, rather than the lack of insulin direct effects on brain. It is also well-approved that vanadium compounds have insulin-like and anti-diabetic effects, and the present study was designed to compare the protective effects of diabetes treatment with vanadium or insulin on ischemic/reperfused brain injury.
View Article and Find Full Text PDFBackground: Hyperthyroidism as a risk factor for stroke is not conclusive. There are no definite data on the relationship between ischemic cerebrovascular injury and hyperthyroidism. This study was designed to define whether the outcomes of post-ischemic stroke injury are influenced by chronic hyperthyroidism.
View Article and Find Full Text PDFBackground: Oral vanadyl sulfate (vanadium) induces normoglycemia, proliferates beta cells and prevents pancreatic islet atrophy in streptozotocin-induced diabetic rats. Soteriological method is used to quantitate the proliferative effects of vanadium on beta-cell numbers and islet volumes of normal and diabetic rats.
Methods: Adult male Sprague-Dawley rats were made diabetic with intravenous streptozotocin injection (40 mg/kg).
Context: Oral vanadyl sulfate (vanadium) has potent hypoglycemic effects in diabetes animals, but data about its actions on pancreatic beta-cells (BC) ultrastructure is limited.
Objective: Partial diabetic rats were treated with vanadium and insulin injection and their effects on BC ultrastructure are studied.
Methods: Male rats were made diabetic with intravenous streptozotocin injection (STZ, 40 mg/kg).
Background: Stroke is the third leading cause of invalidism and death in industrialized countries. There are conflicting reports about the effects of Angiotensin II on ischemia-reperfusion brain injuries and most data have come from chronic hypertensive rats. In this study, hypotensive and non-hypotensive doses of candesartan were used to investigate the effects of angiotensin II AT1 receptor blockade by transient focal cerebral ischemia in normotensive rats.
View Article and Find Full Text PDFBackground: Angiotensin II (Ang II) has an important role on cerebral microcirculation; however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat.
Methods: Rats were exposed to 60-min middle cerebral artery (MCA) occlusion.
Background: Data shows vanadium protects pancreatic beta cells (BC) from diabetic animals. Whether this effect is direct or through the relief of glucose toxicity is not clear. This study evaluated the potential effect of oral vanadyl sulfate (vanadium) on glycemic status and pancreatic BC of normal and diabetic rats.
View Article and Find Full Text PDF1. In the present study, we investigated the effects of postischaemic angiotensin-converting enzyme (ACE) inhibition with enalapril on vasogenic oedema formation and blood-brain barrier (BBB) integrity following transient focal cerebral ischaemia in rats. 2.
View Article and Find Full Text PDFBackground: Vanadium compounds are able to reduce blood glucose in experimentally- induced diabetic rats and type 2 diabetic patients, but data about their long- term safety and efficacy in diabetic patients are scarce.
Methods: Fourteen type 1 diabetic patients received oral vanadyl sulfate (50 - 100 mg TID) for a period of 30 months. Fasting blood sugar (FBS), lipid levels, hematologic, and biochemical parameters were measured before and periodically during the treatment.
This study aimed to dissect the roles played by the autonomic interoreceptors, the carotid bodies (cbs) and the aortic bodies (abs) on the vascular resistances of several organs in anesthetized, paralyzed, artificially ventilated cats challenged by systemic hypoxemia. Two 15 min challenges stimulated each of 5 animals in two different groups: (1) in the intact group hypoxic hypoxia (10% O2 in N2; HH) stimulated both abs and cbs, increasing neural output to the nucleus tractus solitarius (NTS); (2) in this group carbon monoxide hypoxia (30% O2 in N2 with the addition of CO; COH) stimulated only the abs, increasing neural output to the NTS. (3) In the second group in which their bilateral aortic depressor nerves had been transected only the cbs increased neural output to the NTS during the HH challenge; (4) in this aortic body resected group during COH neither abs nor cbs increased neural traffic to the NTS.
View Article and Find Full Text PDFThis study aimed to determine the roles played by the autonomic interoreceptors, the carotid bodies (cbs) and the aortic bodies (abs) in anesthetized, paralyzed, artificially ventilated cats' response to systemic hypoxemia. Four 15min challenges stimulated each of 15 animals: (1) hypoxic hypoxia (10%O₂ in N₂; HH) in the intact (int) cat where both abs and cbs sent neural traffic to the nucleus tractus solitarius (NTS); (2) carbon monoxide hypoxia (30%O₂ in N₂ with the addition of CO; COH) in the intact cat where only the abs sent neural traffic to the NTS; (3) HH in the cat after transection of both aortic depressor nerves, resecting the aortic bodies (HHabr), where only the cbs sent neural traffic to the NTS; (4) COH to the abr cat where neither abs nor cbs sent neural traffic to the NTS. Cardiac output (C.
View Article and Find Full Text PDFBackground: Central renin angiotensin system has an important role on the cerebral microcirculation and metabolism. Our previous work showed that inhibition of angiotensin converting enzyme (ACE) activity prior to induction of ischemia protected the brain from severe ischemia/reperfusion (I/R) injuries. This study evaluated the impacts of post-ischemic inhibition of ACE, enalapril, on brain infarction in normotensive rats.
View Article and Find Full Text PDFBackground: Acute respiratory disorders may lead to sustained alveolar hypoxia with hypercapnia resulting in impaired pulmonary gas exchange. Hypoxic pulmonary vasoconstriction (HPV) optimizes gas exchange during local acute (0-30 min), as well as sustained (> 30 min) hypoxia by matching blood perfusion to alveolar ventilation. Hypercapnia with acidosis improves pulmonary gas exchange in repetitive conditions of acute hypoxia by potentiating HPV and preventing pulmonary endothelial dysfunction.
View Article and Find Full Text PDFEndogenous level of nitric oxide (NO) is increased in the brain following the stroke, and deactivation of NO synthase has been shown to attenuate its destructive actions in animal stroke models using middle cerebral artery occlusion (MCAO) procedures. However, little is known about the effects of NO in cerebral vascular integrity and edema during acute cerebral ischemia. Here we investigated whether NO plays any role in the progression of blood-brain barrier (BBB) disruption and edema formation in ischemia/reperfusion injury.
View Article and Find Full Text PDFBackground: Nitric oxide synthase (NOS) activity is increased during hypertension and cerebral ischemia. NOS inactivation reduces stroke-induced cerebral injuries, but little is known about its role in blood-brain barrier (BBB) disruption and cerebral edema formation during stroke in acute hypertension. Here, we investigated the role of NOS inhibition in progression of edema formation and BBB disruptions provoked by ischemia/reperfusion injuries in acute hypertensive rats.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2009
Acute respiratory disorders and permissive hypercapnic strategy may lead to alveolar hypoxia and hypercapnic acidosis. However, the effects of hypercapnia with or without acidosis on hypoxic pulmonary vasoconstriction (HPV) and oxygen diffusion capacity of the lung are controversial. We investigated the effects of hypercapnic acidosis and hypercapnia with normal pH (pH corrected with sodium bicarbonate) on HPV, capillary permeability, gas exchange, and ventilation-perfusion matching in the isolated ventilated-perfused rabbit lung.
View Article and Find Full Text PDF