The effective conversion of methane to a mixture of more valuable hydrocarbons and hydrogen under mild conditions is a significant scientific and practical challenge. Here, we synthesized Zn-containing nanosized MFI zeolite for direct oxidation of methane in the presence of HO and air. The presence of the surface hydroxyl groups on nanosized MFI-type zeolite and their significant reduction in the Zn-containing nanosized MFI zeolite were confirmed with Infrared Fourier Transform (FTIR) spectroscopy.
View Article and Find Full Text PDFNumerous pieces of evidence in the literature suggest that zeolitic materials exhibit significant intrinsic flexibility as a consequence of the spring-like behavior of Si-O and Al-O bonds and the distortion ability of Si-O-Si and Al-O-Si angles. Understanding the origin of flexibility and how it may be tuned to afford high adsorption selectivity in zeolites is a big challenge. Zeolite flexibility may be triggered by changes in temperature, pressure, or chemical composition of the framework and extra-framework compounds, as well as by the presence of guest molecules.
View Article and Find Full Text PDFIn the context of glioblastoma (GBM), hypoxia and inflammation are two main players of the tumor microenvironment. Hypoxia stimulates various features involves in tumor growth and also maintains a specific environment that favors protumor macrophages. Therefore, targeting hypoxia could potentially restore an anti-tumor M1 phenotype in macrophages.
View Article and Find Full Text PDFSilanols are key players in the application performance of zeolites, yet, their localization and hydrogen bonding strength need more studies. The effects of post-synthetic ion exchange on nanosized chabazite (CHA), focusing on the formation of silanols, were studied. The significant alteration of the silanols of the chabazite nanozeolite upon ion exchange and their effect on the CO adsorption capacity was revealed by solid-state nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR) spectroscopy, and periodic density functional theory (DFT) calculations.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2022
While the use of nanozeolites for cancer treatment holds a great promise, it also requires a better understanding of the interaction between the zeolite nanoparticles and cancer cells and notably their internalization and biodistribution. It is particularly important in situation of hypoxia, a very common situations in aggressive cancers, which may change the energetic processes required for cellular uptake. Herein, we studied, in vitro, the kinetics of the internalization process and the intracellular localization of nanosized zeolite X (FAU-X) into glioblastoma cells.
View Article and Find Full Text PDFA clear understanding of the crystal formation pathways of zeolites remains one of the most challenging issues to date. Here we investigate the synthesis of nanosized chabazite (CHA) zeolites using organic template-free colloidal suspensions by varying the time of aging at room temperature and the time of hydrothermal treatment at 90 °C. The role of mixed alkali metal cations (Na, K, Cs) on the formation of CHA in the colloidal suspensions was studied.
View Article and Find Full Text PDF