Publications by authors named "Ghodsi Mohammadi Ziarani"

The efficient utilization of light and the prolonged lifetime of photo-induced charge carriers are essential elements that contribute to superior photocatalytic activity. Yolk-shell nanostructures with porous shells and mobile cores offer significant structural advantages in achieving these goals. However, designing yolk-shell multicomponent nanocomposites with diverse architectures remains a persistent challenge.

View Article and Find Full Text PDF

Initially, SBA-Propyl-Isatin-Malononitrile (SBA-Pr-IS-MN) was prepared by the reaction of SBA-Pr-Cl with IS-MN, which was synthesized by the reaction of isatin and malononitrile. This organic and inorganic hybrid material can be functionalized by the sequential reaction with dimedone to obtain the target product SBA-Pr-Is-MN-DM, which was investigated as a chemosensor by fluorescence spectroscopy to detect trace amount of Ag among several other cations in aqueous media.

View Article and Find Full Text PDF

The surface of fumed silica nanoparticles was modified by pyridine carbaldehyde and barbituric acid to provide fumed-Si-Pr-Ald-Barb. The structure was identified and investigated through diverse techniques, such as FT-IR, EDX, Mapping, BET, XRD, SEM, and TGA. This nanocomposite was used to detect different cations and anions in a mixture of HO:EtOH.

View Article and Find Full Text PDF

Morphological modulation in covalent organic frameworks (COFs) with particular emphasis on the correlation between structure and target applications in biomedical fields, is currently in its early stage of evolution. Herein, a multifunctional rattle-architecture imine-based COF with a mobile core of gold nanoparticles (Au NPs) and an outer polydopamine (PDA) shell, tailored for cancer treatment, has been developed to effectively integrate dual responsive release capabilities with the potential for multiple therapeutic applications. The engineered COF displays outstanding crystallinity, a suitable size and precisely controlled morphological characteristics.

View Article and Find Full Text PDF

Engineering bulk covalent organic frameworks (COFs) to access specific morphological structures holds paramount significance in boosting their functions in cancer treatment; nevertheless, scant effort has been dedicated to exploring this realm. Herein, silica core-shell templates and multifunctional COF-based reticulated hollow nanospheres (HCOFs) are novelly designed as a versatile nanoplatform to investigate the simultaneous effect of dual-drug chemotherapy and photothermal ablation. Taking advantage of the distinct structural properties of the template, the resulting two-dimensional (2D) HCOF, featuring large internal voids and a peripheral interconnected mesoporous shell, presents intriguing benefits over its bulk counterparts for cancer treatment, including a well-defined morphology, an outstanding drug loading capability (99.

View Article and Find Full Text PDF

A highly efficient fluorescent sensor (S-DAC) was easily created by functionalizing the SBA-15 surface with N-(2-Aminoethyl)-3-Aminopropyltrimethoxysilane followed by the covalent attachment of 7-diethylamino 3-acetyl coumarin (DAC). This chemosensor (S-DAC) demonstrates selective and sensitive recognition of Fe and Hg in water-based solutions, with detection limits of 0.28 × 10 M and 0.

View Article and Find Full Text PDF

MOF-derived heteroatom-doped mesoporous carbons have gained the significant consideration in heterogenous catalytic reactions because of their multipurpose features. Especially, the high Specific Surface Area (SSA) of these materials provides abundant activated sites for the catalytic reactions, while the mesoporous structure allows for the effective mass transfer, enhancing the overall capability of the catalytic process. Herein, the efficient NiO/CN-T (T referred to the pyrolysis temperature) was prepared by facile pyrolysis of MOF/CS composite (Ni-MOF (74), Chitosan) in the presence of excess amount of starch as the carbon precursor.

View Article and Find Full Text PDF

The utilization of photocatalysts offers a promising approach for the removal of Cr (VI) and rhodamine dyes. Through the generation of reactive species and subsequent degradation reactions, photocatalysis provides an efficient and environmentally friendly method for the remediation of wastewater. In this study, we have synthesized an n-p-n heterojunction of carbon nitride (CN), zinc oxide (ZnO), and black phosphorus (BP) through the sonication-stirring method.

View Article and Find Full Text PDF

Fumed silica was functionalized by piperazine followed by the reaction with 2- naphthalenesulfonyl chloride to prepare Fumed-Si-Pr-Piperazine-Naphthalenesulfonyl chloride (Fumed-Si-Pr-PNS), which was characterized to demonstrate the effective attachment on the surface of fumed silica. The optical sensing ability of Fumed-Si-Pr-PNS was studied via diverse metal ions in HO solution by photoluminescence spectroscopy. The results showed that Fumed-Si-Pr-PNS detected selectively Hg ions.

View Article and Find Full Text PDF
Article Synopsis
  • - Photocatalysis is an eco-friendly technique that uses abundant light for reactions, making it ideal for water purification, detoxification, and producing green fuels due to its minimal environmental impact.
  • - Black phosphorus (BP) is a promising material for photocatalytic applications because of its unique structure and properties, which can be adapted for various environments and applications.
  • - The text discusses the methods of synthesizing BP and improving its photocatalytic performance, along with its potential uses in environmental remediation and various sustainable processes, while also highlighting challenges and future directions in this field.
View Article and Find Full Text PDF

Enhancement of the photocatalytic activity of black phosphorus (BP) is a highly challenging proposition. The fabrication of electrospun composite nanofibers (NFs) through the incorporation of modified BP nanosheets (BPNs) into conductive polymeric NFs has been recently introduced as a newer strategy not only to enhance the photocatalytic activity of BPNs but also to overcome their drawbacks including ambient instability, aggregation, and hard recycling, which exist in their nanoscale powdered forms. The proposed composite NFs were prepared through the incorporation of silver (Ag)-modified BPNs, gold (Au)-modified BPNs, and graphene oxide (GO)-modified BPNs into polyaniline/polyacrylonitrile (PANi/PAN) NFs by an electrospinning process.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are crystal-like organic structures such as cartography buildings prepared from appropriately pre-designed construction block precursors. Moreover, after the expansion of the first COF in 2005, numerous researchers have been developing different materials for versatile applications such as sensing/imaging, cancer theranostics, drug delivery, tissue engineering, wound healing, and antimicrobials. COFs have harmonious pore size, enduring porosity, thermal stability, and low density.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have recently garnered considerable attention among reticular compounds due to their unique physicochemical properties and applications in sensing toxic compounds. On the other hand, fluorometric sensing has been widely studied for food safety and environmental protection among the various sensing methods. Thus, designing MOF-based fluorescence sensors for specific detection of hazardous compounds, especially pesticides, are incessantly needed to keep up with the continuous demands for monitoring these environmental pollution.

View Article and Find Full Text PDF

Today, MXenes and their composites have shown attractive capabilities in numerous fields of electronics, co-catalysis/photocatalysis, sensing/imaging, batteries/supercapacitors, electromagnetic interference (EMI) shielding, tissue engineering/regenerative medicine, drug delivery, cancer theranostics, and soft robotics. In this aspect, MXene-carbon nanotube (CNT) composites have been widely constructed with improved environmental stability, excellent electrical conductivity, and robust mechanical properties, providing great opportunities for designing modern and intelligent systems with diagnostic/therapeutic, electronic, and environmental applications. MXenes with unique architectures, large specific surface areas, ease of functionalization, and high electrical conductivity have been employed for hybridization with CNTs with superb heat conductivity, electrical conductivity, and fascinating mechanical features.

View Article and Find Full Text PDF

MXenes with unique mechanical, optical, electronic, and thermal properties along with a specific large surface area for surface functionalization/modification, high electrical conductivity, magnetic properties, biocompatibility, and low toxicity have been explored as attractive candidates for the targeted delivery of drugs in cancer therapy. These two-dimensional materials have garnered much attention in the field of cancer therapy since they have shown suitable photothermal effects, biocompatibility, and luminescence properties. However, outstanding challenging issues regarding their pharmacokinetics, biosafety, targeting properties, optimized functionalization, synthesis/reaction conditions, and clinical translational studies still need to be addressed.

View Article and Find Full Text PDF

Environmental pollution caused by industries and human manipulations is coming a serious global challenge. On the other hand, the world is facing an energy crisis caused by population growth. Designing solar-driven photocatalysts which are inspired by the photosynthesis of plant leaves is a fantastic solution to use solar energy as green, available, and unlimited energy containing ∼50% visible light for the removal of environmental pollutants.

View Article and Find Full Text PDF

In this work, europium ion was doped into boron phosphate nanoparticles (BPO) using an ultrasonic method followed by the calcination process. The nanoparticles were characterized by various techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, and scanning electron microscopy (SEM). Doping of europium ion into the BPO host crystal was proved by cell volume calculation from XRD patterns, the shift in Raman spectra, and photoluminescence properties.

View Article and Find Full Text PDF

It is crucial to fabricate cost-effective and efficient strategies for monitoring and eliminating hazardous metals in the water supplies. Among the many techniques, adsorption is one of the most powerful and facile ways for eliminating pollutants from effluents. It is also crucial to engineering high-performance low-cost adsorbents.

View Article and Find Full Text PDF

Some new, highly selective, and sensitive colorimetric pH indicators, spiro[4H-indeno-[1,2-b]pyridine-4,3'-[3H]indoles] (SIPIs) in aqueous solution were developed. SIPIs were synthesized via a one-pot four-component condensation of isatin derivatives, β-diketones 1,3-indandione, and ammonium acetate using FSi-PrNH-BuSOH as a nanocatalyst in EtOH. According to the experimental evaluations, it was found that SIPI derivatives are pH indicators for naked-eye detection of OH- ion with intense color changes from orange to purple in the pH range of 10.

View Article and Find Full Text PDF

Magnetic nanoparticles have attracted significant attention due to their high surface area and superparamagnetic properties. Bio-polymers composed of polysaccharides including alginate, cellulose, glucose, dextrin, chitosan, and starch can be immobilized on magnetic nanoparticles. Bio-polymers can be obtained from natural sources, such as plants, tunicates, algae, and bacteria.

View Article and Find Full Text PDF

Magnetically recoverable nano-catalysts can be readily separated from the reaction medium using an external magnet. In recent years, chemistry researchers have employed them as catalysts in chemical reactions. The high surface area, simple preparation, and modification are among their major advantages.

View Article and Find Full Text PDF

1H-Indole-3-carbaldehyde and related members of the indole family are ideal precursors for the synthesis of active molecules. 1H-Indole-3-carbaldehyde and its derivatives are essential and efficient chemical precursors for generating biologically active structures. Multicomponent reactions (MCRs) offer access to complex molecules.

View Article and Find Full Text PDF

A tripod organic compound, (4,4',4''-[1,3,5-Triazine-2,4,6-triyltris(oxy)] tribenzoic acid, TCPT), with donor triazine core and multiple fluorophore carboxylic motives, was prepared as an efficient ligand with high emission properties. The TCPT fluorescence emission properties as a chemical sensor were studied (λ = 370 nm) upon the addition of an appropriately diverse set of metal cations. The obtained results revealed the highly selective and efficient role of Cu in quenching of TCPT, even with relevant interfering metal ions.

View Article and Find Full Text PDF

An organic chemical sensor based on pyrimidine was successfully produced through the green reaction between aromatic aldehyde, malononitrile, and guanidine carbonate using SBA-Pr-SOH. This fluorescence intensity of chemosensor (2,4-diamino-6-(phenyl)pyrimidine-5-carbonitrile) decreases by the addition of Hg and its detection limit is about 14.89 × 10 M, in fact, through the green synthesis, the ligand was yielded to detect Hg and the importance of ligand was considered in docking studies.

View Article and Find Full Text PDF

The treatment of water contaminated by bacteria is becoming a necessity. The nanomaterials possessing both intrinsic antibacterial properties and photocatalytic activity are excellent candidates for water disinfection. The powdered form of nanomaterials can be aggregated while embedding the nanomaterials into the NFs can overcome the limitation and enhance the photocatalytic activity and transition from UV-light to visiblelight.

View Article and Find Full Text PDF