Cell stiffness and T-box transcription factor 3 (TBX3) expression have been identified as biomarkers of melanoma metastasis in 2D environments. This study aimed to determine how mechanical and biochemical properties of melanoma cells change during cluster formation in 3D environments. Vertical growth phase (VGP) and metastatic (MET) melanoma cells were embedded in 3D collagen matrices of 2 and 4 mg/ml collagen concentrations, representing low and high matrix stiffness.
View Article and Find Full Text PDFDuring chemotherapy, structural and mechanical changes in malignant cells have been observed in several cancers, including leukaemia and pancreatic and prostate cancer. Such cellular changes may act as physical biomarkers for chemoresistance and cancer recurrence. This study aimed to determine how exposure to paclitaxel affects the intracellular stiffness of human oesophageal cancer of South African origin in vitro.
View Article and Find Full Text PDFThe formation of membrane protrusions during migration is reliant upon the cells' cytoskeletal structure and stiffness. It has been reported that actin disruption blocks protrusion and decreases cell stiffness whereas microtubule disruption blocks protrusion but increases stiffness in several cell types. In melanoma, cell migration is of concern as this cancer spreads unusually rapidly during early tumour development.
View Article and Find Full Text PDF