Within the last two decades, SARS-CoV-2 was the third zoonotic severe acute respiratory betacoronavirus (sarbecovirus) to infect humans, following SARS and MERS. The disruptions caused by the pandemic underscore the need for a universal vaccine against respiratory betacoronaviruses. Our group previously developed the universal platform for vaccine development, MultiTEP, which has been utilized in this study to generate a range of SARS-CoV-2 epitope vaccine candidates.
View Article and Find Full Text PDFPost-translationally modified N-terminally truncated amyloid beta peptide with a cyclized form of glutamate at position 3 (pEAβ) is a highly pathogenic molecule with increased neurotoxicity and propensity for aggregation. In the brains of Alzheimer's Disease (AD) cases, pEAβ represents a major constituent of the amyloid plaque. The data show that pEAβ formation is increased at early pre-symptomatic disease stages, while tau phosphorylation and aggregation mostly occur at later stages of the disease.
View Article and Find Full Text PDFCancer testis antigens are ideal for tumor immunotherapy due to their testis-restricted expression. We previously showed that an immunotherapeutic vaccine targeting the germ cell-specific transcription factor BORIS (CTCFL) was highly effective in treating aggressive breast cancer in the 4T1 mouse model. Here, we further tested the therapeutic efficacy of BORIS in a rat 13762 breast cancer model.
View Article and Find Full Text PDFPathological forms of Tau protein are directly associated with neurodegeneration and correlate with Alzheimer's Disease (AD) symptoms, progression, and severity. Previously, using various mouse models of Tauopathies and AD, we have demonstrated the immunogenicity and efficacy of the MultiTEP-based adjuvanted vaccine targeting the phosphatase activating domain (PAD) of Tau, AV-1980R/A. Here, we analyzed its immunogenicity in non-human primates (NHP), the closest phylogenic relatives to humans with a similar immune system, to initiate the transition of this vaccine into clinical trials.
View Article and Find Full Text PDFParkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by the aberrant accumulation of intracytoplasmic misfolded and aggregated α-synuclein (α-Syn), resulting in neurodegeneration associated with inflammation. The propagation of α-Syn aggregates from cell to cell is implicated in the spreading of pathological α-Syn in the brain and disease progression. We and others demonstrated that antibodies generated after active and passive vaccinations could inhibit the propagation of pathological α-Syn in the extracellular space and prevent/inhibit disease/s in the relevant animal models.
View Article and Find Full Text PDFAccumulation of misfolded proteins such as amyloid-β (Aβ), tau, and α-synuclein (α-Syn) in the brain leads to synaptic dysfunction, neuronal damage, and the onset of relevant neurodegenerative disorder/s. Dementia with Lewy bodies (DLB) and Parkinson's disease (PD) are characterized by the aberrant accumulation of α-Syn intracytoplasmic Lewy body inclusions and dystrophic Lewy neurites resulting in neurodegeneration associated with inflammation. Cell to cell propagation of α-Syn aggregates is implicated in the progression of PD/DLB, and high concentrations of anti-α-Syn antibodies could inhibit/reduce the spreading of this pathological molecule in the brain.
View Article and Find Full Text PDFThe DNA vaccine, AV-1959D, targeting N-terminal epitope of Aβ peptide, has been proven immunogenic in mice, rabbits, and non-human primates, while its therapeutic efficacy has been shown in mouse models of Alzheimer's disease (AD). Here we report for the first time on IND-enabling biodistribution and safety/toxicology studies of cGMP-grade AV-1959D vaccine in the Tg2576 mouse model of AD. We also tested acute neuropathology safety profiles of AV-1959D in another AD disease model, Tg-SwDI mice with established vascular and parenchymal Aβ pathology in a pre-clinical translational study.
View Article and Find Full Text PDFBackground: Alzheimer disease (AD) is characterized by the accumulation of beta-amyloid (Aβ) plaques and neurofibrillary tangles composed of hyperphosphorylated tau, which together lead to neurodegeneration and cognitive decline. Current therapeutic approaches have primarily aimed to reduce pathological aggregates of either Aβ or tau, yet phase 3 clinical trials of these approaches have thus far failed to delay disease progression in humans. Strong preclinical evidence indicates that these two abnormally aggregated proteins interact synergistically to drive downstream neurodegeneration.
View Article and Find Full Text PDFPathological tau correlates well with cognitive impairments in Alzheimer's disease (AD) patients and therefore represents a promising target for immunotherapy. Targeting an appropriate B cell epitope in pathological tau could in theory produce an effective reduction of pathology without disrupting the function of normal native tau. Recent data demonstrate that the N-terminal region of tau (aa 2-18), termed the "phosphatase activation domain (PAD)", is hidden within native Tau in a 'paperclip'-like conformation.
View Article and Find Full Text PDFAbnormal tau hyperphosphorylation and its aggregation into neurofibrillary tangles are a hallmark of tauopathies, neurodegenerative disorders that include Alzheimer's disease (AD). Active and passive Tau-immunotherapy has been proposed as a therapeutic approach to AD with mixed results. One of the limitations of active immunotherapy may be associated with the mediocre immunogenicity of vaccines that are not inducing therapeutically potent titers of antibodies.
View Article and Find Full Text PDFDendritic cells (DCs) are well-known for their functions in orchestrating the innate and adaptive arms of immune defense. However, under certain conditions, DCs can exert tumoricidal activity. We have elucidated the mechanism of tumor suppression by TLR4-activated bone marrow-derived DCs (BMDCs) isolated from BALB/c mice.
View Article and Find Full Text PDFWe have previously demonstrated that anti-beta amyloid DNA vaccine (AV-1959D) based on our proprietary MultiTEP platform technology is extremely immunogenic in mice, rabbits, and monkeys. Importantly, MultiTEP platform enables development of vaccines targeting pathological molecules involved in various neurodegenerative disorders. Taking advantage of the universality of MultiTEP platform, we developed DNA vaccines targeting 3 B-cell epitopes (amino acids [aa]85-99, aa109-126, and aa126-140) of human alpha-synuclein (hα-Syn) separately or all 3 epitopes simultaneously.
View Article and Find Full Text PDFBackground: The experience from clinical trials indicates that anti-Aβ immunotherapy could be effective in early/pre-clinical stages of AD, whereas at the late stages promoting the clearing of Aβ alone may be insufficient to halt the disease progression. At the same time, pathological tau correlates much better with the degree of dementia than Aβ deposition. Therefore, targeting pathological tau may provide a more promising approach for the treatment of advanced stages of AD.
View Article and Find Full Text PDFBackground: By the time clinical symptoms of Alzheimer's disease (AD) manifest in patients there is already substantial tau pathology in the brain. Recent evidence also suggests that tau pathology can become self-propagating, further accelerating disease progression. Over the last decade several groups have tested the efficacy of protein-based anti-tau immunotherapeutics in various animal models of tauopathy.
View Article and Find Full Text PDFPreviously, we reported that Alzheimer's disease (AD) epitope vaccines (EVs) composed of N-terminal β-amyloid (Aβ) B cell epitope fused with universal foreign T helper (Th) epitope(s) were immunogenic, potent, and safe in different amyloid precursor protein (APP) transgenic mice with early AD-like pathology. However, developing an effective therapeutic vaccine is much more challenging, especially when a self-antigen such as Aβ is a target. Here, we directly compare the efficacy of anti-Aβ antibodies in Tg2576 mice with low or high levels of AD-like pathology at the start of immunizations: 6-6.
View Article and Find Full Text PDFAlthough β-amyloid (Aβ) may be the primary driver of Alzheimer's disease (AD) pathology, accumulation of pathological tau correlates with dementia in AD patients. Thus, the prevention/inhibition of AD may require vaccine/s targeting Aβ and tau simultaneously or sequentially. Since high antibody titers are required for AD vaccine efficacy, we have decided to generate vaccines, targeting Aβ (AV-1959R), Tau (AV-1980R) or Aβ/tau (AV-1953R) B cell epitopes, based on immunogenic MultiTEP platform and evaluate the immunogenicity of these vaccines formulated with Advax(CpG), delta inulin, Alhydrogel(®), Montanide-ISA51, Montanide-ISA720, MPLA-SM pharmaceutical grade adjuvants.
View Article and Find Full Text PDFTraditional vaccination against infectious diseases relies on generation of cellular and humoral immune responses that act to protect the host from overt disease even though they do not induce sterilizing immunity. More recently, attempts have been made with mixed success to generate therapeutic vaccines against a wide range of noninfectious diseases including neurodegenerative disorders. After the exciting first report of successful vaccine prevention of progression of an Alzheimer's disease (AD) animal model in 1999, various epitope-based vaccines targeting amyloid beta (Aβ) have proceeded to human clinical trials, with varied results.
View Article and Find Full Text PDFNovel dual vaccine, WSN-Aβ(1-10), based on the recombinant influenza virus, expressing immunodominant B-cell epitope of β-amyloid, simultaneously induced therapeutically potent anti-Aβ and anti-influenza antibodies. In this study we showed that boosting of WSN-WT primed mice with WSN-Aβ(1-10) enhances anti-viral, but fails to induce anti-Aβ antibody responses. This inhibition is associated with expression of Aβ(1-10) within the context of an inactivated influenza virus vaccine.
View Article and Find Full Text PDFBackground: Previously we demonstrated that the resection of primary 4T1 tumors only slightly prolongs mouse survival, but importantly, creates a "window of opportunity" with attenuated suppressor cell and increased activated T cell populations. This suggests that additional activation of the immune system by immunostimulatory agents during this period may enhance anti-tumor immunity and potentially eradicate micro-metastatic disease in this stringent model. We hypothesized that the immunostimulator Immunomax®, which is comprised of a plant-derived polysaccharide, is non-toxic in humans and stimulates immune defense during the infectious diseases treatment, may have also anti-tumor activity and be beneficial in the adjuvant setting when endogenous anti-tumor responses are present and during the "window of opportunity" in post-resection metastatic breast cancer model.
View Article and Find Full Text PDFDNA vaccines promote immune system activation in small animals and exhibit certain advantages when compared to conventional recombinant protein vaccines. However in clinical trials DNA vaccines are less effective in inducing potent immune responses due to the low delivery efficiency and expression of antigens. Currently, various delivery devices such as gene-guns, bioinjectors and electroporation systems are being used in order to increase the potency of DNA vaccines.
View Article and Find Full Text PDFMethods Mol Biol
November 2014
Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ.
View Article and Find Full Text PDFBackground: As a prelude to clinical trials we have characterized B- and T-cell immune responses in macaques to AD vaccine candidates: AV-1955 and its slightly modified version, AV-1959 (with 3 additional promiscuous Th epitopes).
Methods: T- and B-cell epitope mapping was performed using the ELISPOT assay and competition ELISA, respectively.
Results: AV-1955 and AV-1959 did not stimulate potentially harmful autoreactive T cells, but instead activated a broad but individualized repertoire of Th cells specific to the MultiTEP platform in macaques.
Alzheimer disease (AD) process involves the accumulation of amyloid plaques and tau tangles in the brain, nevertheless the attempts at targeting the main culprits, neurotoxic β-amyloid (Aβ) peptides, have thus far proven unsuccessful for improving cognitive function. Important lessons about anti-Aβ immunotherapeutic strategies were learned from the first active vaccination clinical trials. AD progression could be safely prevented or delayed if the vaccine (1) induces high titers of antibodies specific to toxic forms of Aβ; (2) does not activate the harmful autoreactive T cells that may induce inflammation; (3) is initiated before or at least at the early stages of the accumulation of toxic forms of Aβ.
View Article and Find Full Text PDF