Publications by authors named "Ghobashy M"

This study aims to develop a series of cation exchange hydrogel resins via gamma irradiation technique through copolymerizing styrene sodium sulfonate with three acrylamide derivatives (designated as poly(X-co-styrene sodium sulfonate), where X refers to acrylamide (PAASS), methacrylamide (PMASS), and isopropyl acrylamide (PIASS)). The prepared hydrogel resins were characterized and tested for the adsorption removal of hard/scale metal cations (e.g.

View Article and Find Full Text PDF

Application of melatonin and lipopeptides (LPs) derived from Bacillus strains is considered an efficient strategy to control plant diseases at both pre and postharvest stages. However, the combined application of melatonin and LPs has not been studied yet. Therefore, the present study presents the synergistic effect of melatonin and LPs produced by Bacillus atrophaeus strain MCM61 against gray mold disease and its impact on quality parameters and vase life of cut roses.

View Article and Find Full Text PDF

Background: Denture fracture is a common problem with acrylic dentures. The fractured denture can be repaired using various techniques such as self-cure acrylic resin acrylic resin and fiber-reinforced acrylic resin.

Purpose: The purpose of this study was to compare the accuracy of dentures repaired with self-cure acrylic resin and fiber-reinforced acrylic resin processed using two different techniques (long-cure and microwave processing).

View Article and Find Full Text PDF

This research investigates the formulation of a nanogel complex using pectin and poly(acrylic acid) (PAAc) to encapsulate rutin. The nanogel's pH-responsive behavior and its potential as a targeted drug delivery platform are investigated. The gamma irradiation-induced crosslinking mechanism is elucidated, highlighting its role in creating a stable three-dimensional network structure within the polymer matrix.

View Article and Find Full Text PDF

Water scarcity poses a significant challenge to agricultural production, prompting the development of sustainable technologies to optimize water resource utilization. This study focuses on the synthesis and application of a multifunctional poly (vinylpyrrolidone); PVP-based superabsorbent hydrogel (SAH) for controlled release of essential fertilizers (nitrogen, phosphorus, and potassium) and enhanced water retention in soil. The hydrogel was prepared via a facile one-step approach and compared to a control soil without hydrogel amendment.

View Article and Find Full Text PDF

The cardioprotective drug cyclocreatine phosphate has been awarded Food and Drug Administration-orphan drug designation for the prevention of ischemic injury to enhance cardiac graft recovery and survival in heart transplantation. Cyclocreatine phosphate is the water-soluble derivative of cyclocreatine. Estimating the levels of Cyclocreatine phosphate, Adenosine triphosphate, Creatine Phosphate, Creatine and Cyclocreatine helps us in understanding the energy state as well as evaluating the heart cells' function.

View Article and Find Full Text PDF
Article Synopsis
  • * After reviewing 98 patient cases, researchers found that routine imaging did not influence hospital stays, clinical management, or the need for revision surgeries.
  • * The conclusion suggests that routine postoperative imaging lacks substantial value for uncomplicated cases, highlighting the need for further controlled studies to validate these findings.
View Article and Find Full Text PDF

This study reports the synthesis of novel agar/poly methacrylic acid/poly acrylic acid (AG/PMAc/PAc) superabsorbent hydrogels via gamma radiation and their subsequent urea modification to enhance swelling and water retention for agricultural applications. The superabsorbent hydrogels were prepared by irradiating aqueous mixtures of varying agar concentrations with methacrylic acid/acrylic acid (MAc/Ac) monomers, followed by urea treatment at different cycles and concentrations. The morphological characteristics and chemical structures were confirmed by SEM and FTIR, respectively.

View Article and Find Full Text PDF

Water is a fundamental resource, yet various contaminants increasingly threaten its quality, necessitating effective remediation strategies. Sustainable polymeric adsorbents have emerged as promising materials in adsorption-based water remediation technologies, particularly for the removal of contaminants and deactivation of water-borne pathogens. Pathogenetic water contamination, which involves the presence of harmful bacteria, viruses, and other microorganisms, poses a significant threat to public health.

View Article and Find Full Text PDF

Hypothyroidism is associated with atherosclerosis, which is attributed mainly to an atherogenic lipid profile. Increased intima-media thickness (IMT) is the first structural change detected in atherosclerosis. This prospective cohort study investigated lipid profile and abdominal aorta IMT in patients newly-diagnosed with hypothyroidism and their change one year post-treatment.

View Article and Find Full Text PDF

The cattle egret (B. ibis) as a common wader birds in Egypt, they act a sole reservoir for many parasites and play a vital role in their life cycle and their distribution in their environment. The study was conducted from September 2020 to August 2021.

View Article and Find Full Text PDF

To obtain high efficient elimination of ammonia (NH) from wastewater, Cu(II), Ni(II), and Co(II)) were loaded on Dowex-50WX8 resin (D-H) and studied their removal efficiency towards NH from aqueous solutions. The adsorption capacity of Cu(II)-loaded on D-H (D-Cu) towards NH (q = 95.58 mg/g) was the highest one compared with that of D-Ni (q = 57.

View Article and Find Full Text PDF

The main focus of this study was on using radiation to make an ultra-absorbent hydrogel (UAH) from sodium alginate (SA) and gelatin (GL) biopolymers. This UAH can effectively handle water and nitrogen in wheat farming during drought stress. The hydrogel was synthesized by gamma irradiation-induced SA/GL/polyacrylamide crosslinking at 10-40 kGy.

View Article and Find Full Text PDF

The deposition of paraffin on pipelines during crude oil transit and low-temperature restart processes poses a significant challenge for the oil industry. Addressing this issue necessitates the exploration of innovative materials and methods. Pour point depressants (PPDs) emerge as crucial processing aids to modify paraffin crystallization and enhance crude oil flow.

View Article and Find Full Text PDF

Background: Sickle Cell Disease (SCD) is not a hematologic disease that occurs in isolation; it results in multi-organ complications. There is growing evidence of vascular stiffness as its underlying cause. This study aimed to investigate the relationship between endothelial stiffness and LV dysfunction in SCD patients and to explore its pathophysiology, particularly regarding the depletion of vasodilators such as Nitric Oxide (NO).

View Article and Find Full Text PDF

Introduction: Skin injuries represent a prevalent form of physical trauma, necessitating effective therapeutic strategies to expedite the wound healing process. Hesperidin, a bioflavonoid naturally occurring in citrus fruits, exhibits a range of pharmacological attributes, including antimicrobial, antioxidant, anti-inflammatory, anticoagulant, and analgesic properties. The main objective of the study was to formulate a hydrogel with the intention of addressing skin conditions, particularly wound healing.

View Article and Find Full Text PDF

Ethylene vinyl acetate (EVA) copolymers are widely employed as pour point depressants to enhance the flow properties of crude oil. However, EVA copolymers have limitations that necessitate their development. This work investigated the modification of EVA via gamma radiation-induced grafting of butyl acrylate (BuA) monomers and the evaluation of grafted EVA as a pour point depressant for crude oil.

View Article and Find Full Text PDF

Background: Congenital portosystemic shunt (CPSS) is a vascular malformation in which portal blood drains toward the systemic circulation, leading to pulmonary hypertension.

Case Presentation: A 10-year-old patient was brought for evaluation because of dyspnea on exertion. Echocardiography revealed a pulmonary hypertension of 75 mmHg, and multi-slice CT angiography revealed the presence of a CPSS.

View Article and Find Full Text PDF

The newest method for recycling waste linear low-density polyethylene (LLDPE) is the thermo-catalytic degradation technique known as catalytic pyrolysis. Typically, it is limited by 500-800 °C high temperatures. Catalytic pyrolysis releases toxins and forms harmful carbonized char.

View Article and Find Full Text PDF

Nowadays, many researchers aim to fill polymer materials with inorganic nanoparticles to enhance the polymer properties and gain the merits of the polymeric host matrix. Sol-gel synthesized CoO nanoparticles are subjected to different doses of electron beam (10, 20, and 30 kGy) to study their physiochemical properties and choose the optimized nanoparticles to fill our polymeric matrix. Crosslinked polyethylene (XLPE) has been filled with 5 wt % of un-irradiated cobalt oxide nanoparticles using the melt extruder method.

View Article and Find Full Text PDF

Background: Hemodialysis (HD) success is dependent mainly on vascular access (VA). The aim of this study is to share the experience of Pediatric Nephrology Unit (PNU), Cairo University Children's Hospital (CUCH), with VA-related obstacles in end stage kidney disease (ESKD) HD children.

Methods: This is a retrospective analysis of VA related data of 187 ESKD children received regular HD over 3 year duration (2019-2021).

View Article and Find Full Text PDF

Fluoride and aluminum are ubiquitous toxic metals with adverse reproductive effects. The citrus flavonoid hesperidin has protective activities but poor solubility and bioavailability. Nanoparticulate delivery systems can improve flavonoid effectiveness.

View Article and Find Full Text PDF

The research focuses on utilizing gamma irradiation to synthesize polyacrylic acid-co-polyacrylamide p(AAm-co-AAc) hydrogels. The effect of synthetic parameters on physicochemical features of p(AAm-co-AAc) hydrogls were examined, including acrylic acid (AAc): acrylamide (AAm) weight ratios, monomer concentration, and gamma irradiation dosage (kGy). At the optimum synthetic conditions (30 kGy and 75% AAc), different chemical modifications are explored to incorporate sulfonate, hydroxyl, carboxyl, cysteine, thiol, and amine functional groups within the bare hydrogel (Cpd 0) structure.

View Article and Find Full Text PDF

Marine biofouling, undesirable growth of organisms on submerged surfaces, poses significant challenges in various industries and marine applications. The development of environmentally safe antifouling coatings employing nano-MnO/cellulose nanofiber (CNF) composite with bisphenol A epoxy diacrylate/glycidyl methacrylate (BED/GMA) irradiated by electron beam (T) has been achieved in the current work. The physico-chemical characteristics of the fabricated coatings have been studied using Fourier transforms infrared spectroscopy, scanning electron microscope, water contact angle, and X-ray diffraction.

View Article and Find Full Text PDF