Anaerobic digestion (AD) of lignocellulosic wastes (LW) has garnered substantial interest because of its notable energy and nutrient recovery, along with its potential for reducing greenhouse gas emissions. However, the LW is resistant to degradation, and its hydrolysis typically requires harsh conditions, hence the need for a pretreatment. Conducting a life cycle assessment (LCA) to evaluate the pretreatment of LW is an effective way to assess the environmental impacts associated with various pretreatment methods.
View Article and Find Full Text PDFIntroduction: Most recurrently available organic solvents are toxic and inflammable and pose high risks to human health. Natural deep eutectic solvents (NADESs) have been developed as promising green alternatives.
Objective: We aimed to extract polyphenolic compounds from Mentha pulegium using lactic acid-based deep eutectic solvents.
The main by-product generated by the Spanish olive oil industry, a wet solid lignocellulosic material called "alperujo" (AL), was evaluated as a composting substrate by using different aeration strategies and bulking agents. The experiments showed that composting performance was mainly influenced by the type of bulking agent added, and by the number of mechanical turnings. The bulking agents tested in this study were cotton waste, grape stalk, a fresh cow bedding and olive leaf; the latter showed the worse performance.
View Article and Find Full Text PDFSludge from a sewage treatment plant dealing with the effluent produced during the processing of crude vegetable oil (Lesieur-Cristal, Morocco) was composted in two mixtures (M1 and M2) with household waste obtained from landfill. The different physico-chemical characteristics of the final composts after 5 months of composting were, for M1 and M2, respectively: pH: 8.5 and 7.
View Article and Find Full Text PDFElemental, functional and spectroscopic analyses (FTIR, 13C-NMR) were performed to study fulvic acids of composted olive mill wastes plus cereal straw, in order to follow the maturity of the final product during composting. The extracted fulvic acids were characterized by high nitrogen, acidic functional group and phenolic hydroxyl contents that might have resulted from the high degree of humification and the synthesis of more condensed humic complexes. This was confirmed by a decrease of alcoholic and aliphatic structures and an increase of aromatic structures, as shown by the FTIR and 13C-NMR analyses.
View Article and Find Full Text PDF