ACS Appl Energy Mater
September 2018
The further development of solid oxide fuel and electrolysis cells (SOFC/SOEC) strongly relies on research activities dealing with electrode materials. Recent studies showed that under operating conditions many perovskite-type oxide electrodes are prone to changes of their surface composition, leading to severe changes of their electrochemical performance. This results in a large scatter of data in literature and complicates comparison of materials.
View Article and Find Full Text PDFThe oxygen incorporation and evolution reaction on mixed conducting electrodes of solid oxide fuel or electrolysis cells involves gas molecules as well as ionic and electronic point defects in the electrode. The defect concentrations depend on the gas phase and can be modified by the overpotential. These interrelationships make a mechanistic analysis of partial pressure-dependent current-voltage experiments challenging.
View Article and Find Full Text PDFLa0.6Sr0.4FeO3-δ (LSF) thin films of different thickness were prepared by pulsed laser deposition on yttria stabilized zirconia (YSZ) and characterized by using three electrode impedance spectroscopy.
View Article and Find Full Text PDFOwing to its extraordinary high activity for catalysing the oxygen exchange reaction, strontium doped LaCoO (LSC) is one of the most promising materials for solid oxide fuel cell (SOFC) cathodes. However, under SOFC operating conditions this material suffers from performance degradation. This loss of electrochemical activity has been extensively studied in the past and an accumulation of strontium at the LSC surface has been shown to be responsible for most of the degradation effects.
View Article and Find Full Text PDFImprovement of solid oxide fuel cells strongly relies on the development of cathode materials with high catalytic activity for the oxygen reduction reaction. Excellent activity was found for perovskite-type oxides such as LaSrCoO (LSC), but performance degradation, probably caused by surface composition changes, hinders exploitation of the full potential of LSC. This study reveals that the potentially very high activity of the LSC surface can be traced back to few very active sites.
View Article and Find Full Text PDFThe oxygen stoichiometry of mixed conducting oxides depends on the oxygen chemical potential and thus on the oxygen partial pressure in the gas phase. Also voltages may change the local oxygen stoichiometry and the amount to which such changes take place is quantified by the chemical capacitance of the sample. Impedance spectroscopy can be used to probe this chemical capacitance.
View Article and Find Full Text PDFWe employed operando anomalous surface X-ray diffraction to investigate the buried interface between the cathode and the electrolyte of a model solid oxide fuel cell with atomic resolution. The cell was studied under different oxygen pressures at elevated temperatures and polarizations by external potential control. Making use of anomalous X-ray diffraction effects at the Y and Zr K-edges allowed us to resolve the interfacial structure and chemical composition of a (100)-oriented, 9.
View Article and Find Full Text PDFIn this study, the contribution of grain boundaries to the oxygen reduction and diffusion kinetics of La0.8Sr0.2MnO3 (LSM) thin films is investigated.
View Article and Find Full Text PDFThe oxygen exchange and diffusion properties of LaSrCoO thin films on yttria stabilized zirconia were analyzed by impedance spectroscopy and O tracer experiments. The investigations were performed on the same thin film samples and at the same temperature (400 °C) in order to get complementary information by the two methods. Electrochemical impedance spectroscopy can reveal resistive and capacitive contributions of such systems, but an exact interpretation of the spectra of complex oxide electrodes is often difficult from impedance data alone.
View Article and Find Full Text PDFCation diffusion was investigated in La0.6Sr0.4CoO3-δ (LSC) thin films on (100) yttria stabilized zirconia in the temperature range 625-800 °C.
View Article and Find Full Text PDF