Publications by authors named "Ghislain Picard"

The reflection of sunlight off the snow is a major driver of the Earth's climate. This reflection is governed by the shape and arrangement of ice crystals at the micrometer scale, called snow microstructure. However, snow optical models overlook the complexity of this microstructure by using simple shapes, and mainly spheres.

View Article and Find Full Text PDF

By darkening the snow surface, mineral dust and black carbon (BC) deposition enhances snowmelt and triggers numerous feedbacks. Assessments of their long-term impact at the regional scale are still largely missing despite the environmental and socio-economic implications of snow cover changes. Here we show, using numerical simulations, that dust and BC deposition advanced snowmelt by 17 ± 6 days on average in the French Alps and the Pyrenees over the 1979-2018 period.

View Article and Find Full Text PDF
Article Synopsis
  • Recent observations indicate that shrubs in the Arctic tundra are expanding, which is believed to affect permafrost warming.
  • Research from Bylot Island shows that low shrubs can actually cool the ground during winter, resulting in a temperature decrease of 1.21°C, despite having more insulating snowpack.
  • In spring, the warming effect reverses as shrub branches absorb heat, highlighting the importance of including these thermal dynamics in climate models to better predict permafrost greenhouse gas emissions.
View Article and Find Full Text PDF

Monitoring the evolution of snow on the ground and lake ice-two of the most important components of the changing northern environment-is essential. In this paper, we describe a lightweight, compact and autonomous 24 GHz frequency-modulated continuous-wave (FMCW) radar system for freshwater ice thickness and snow mass (snow water equivalent, SWE) measurements. Although FMCW radars have a long-established history, the novelty of this research lies in that we take advantage the availability of a new generation of low cost and low power requirement units that facilitates the monitoring of snow and ice at remote locations.

View Article and Find Full Text PDF

In-situ snow measurements conducted by European institutions for operational, research, and energy business applications were surveyed in the framework of the European Cooperation in Science and Technology (COST) Action ES1404, called "A European network for a harmonised monitoring of snow for the benefit of climate change scenarios, hydrology, and numerical weather prediction". Here we present the results of this survey, which was answered by 125 participants from 99 operational and research institutions, belonging to 38 European countries. The typologies of environments where the snow measurements are performed range from mountain to low elevated plains, including forests, bogs, tundra, urban areas, glaciers, lake ice, and sea ice.

View Article and Find Full Text PDF

This paper reviews four commonly-used microwave radiative transfer models that take different electromagnetic approaches to simulate snow brightness temperature (T): the Dense Media Radiative Transfer - Multi-Layer model (DMRT-ML), the Dense Media Radiative Transfer - Quasi-Crystalline Approximation Mie scattering of Sticky spheres (DMRT-QMS), the Helsinki University of Technology n-Layers model (HUT-nlayers) and the Microwave Emission Model of Layered Snowpacks (MEMLS). Using the same extensively measured physical snowpack properties, we compared the simulated T at 11, 19 and 37 GHz from these four models. The analysis focuses on the impact of using different types of measured snow microstructure metrics in the simulations.

View Article and Find Full Text PDF

Vegetation phenology is affected by climate change and in turn feeds back on climate by affecting the annual carbon uptake by vegetation. To quantify the impact of phenology on terrestrial carbon fluxes, we calibrate a bud-burst model and embed it in the Sheffield dynamic global vegetation model (SDGVM) in order to perform carbon budget calculations. Bud-burst dates derived from the VEGETATION sensor onboard the SPOT-4 satellite are used to calibrate a range of bud-burst models.

View Article and Find Full Text PDF