The depletion of high-grade and coarse-grain ores has led to an increasing demand for the development of efficient separation technologies for low-grade and fine-grain ores. However, conventional froth flotation techniques are not adequate to efficiently recover fine and ultrafine particles (typically <10-15 μm) due to the low collision probability between these particles and the relatively large bubbles used in the process. The introduction of microbubbles has shown promise in enhancing particle recovery, making it a subject of significant interest.
View Article and Find Full Text PDFThe motion of particles in a monolayer induced by the coalescing of a bare bubble with a planar air-water interface was investigated in a modified Langmuir trough. Experiments were performed to understand the effect of particle hydrophobicity, subphase pH, packing density, the presence of a weak surfactant, and particle size distribution on the behavior of particle movement in the monolayer during the coalescence process. Video tracking software was used to track the particles and extract data based on the video footage.
View Article and Find Full Text PDFThe coalescence and break-up of bubbles are important steps in many industrial processes. To date, most of the literature has been focussed on the coalescence process which has been studied using high speed cinematographic techniques. However, bubble break-up is equally important and requires further research.
View Article and Find Full Text PDFAn experimental apparatus was developed based on the Langmuir-Blodgett trough design to investigate the compression of monolayers of micron size spherical glass particles at the air-water interface and the interaction of an air bubble with the monolayers. The setup modifies the regular Langmuir-Blodgett trough by using a deep and clear glass cell. The cell allowed both the optical observation of the particle monolayer and the insertion of a capillary to produce a bubble under the layer of particles.
View Article and Find Full Text PDFStability of bubbles laden with particles of different densities was investigated. Capillary-held bubbles were produced and coated with particles across the density range of 1.2-3.
View Article and Find Full Text PDFAdv Colloid Interface Sci
November 2015
Particle-stabilised foams (or froths) form the fundamental framework of industrial processes like froth flotation. This review provides an overview of the effects of particles on bubble surfaces. The characteristics of the particles have a profound effect on the stability of the bubbles although the stabilisation mechanisms may differ.
View Article and Find Full Text PDFThe interactions between two individual water droplets were investigated in air using a combination of coalescence rig and high speed video camera. This combination allows the visualization of droplet coalescence dynamics with millisecond resolution which provides information on droplet stability. Bare water droplets coalesced rapidly upon contact, while droplet stability was achieved by coating the droplets with polystyrene particles carrying pH-responsive poly[2-(diethylamino)ethyl methacrylate] hairs (PDEA-PS particles) to form liquid marbles.
View Article and Find Full Text PDF