Objectives: To assess the biocompatibility, bioactivity, and immunomodulatory properties of three new calcium silicate cement-based sealers: Ceraseal (CS), Totalfill BC Sealer (TFbc) and WellRoot ST (WR-ST) on human periodontal ligament stem cells (hPDLSCs).
Materials And Methods: HPDLSCs were isolated from extracted third molars from healthy patients. Eluates (1:1, 1:2, and 1:4 ratio) and sample discs of CS, TFbc and WR-ST after setting were prepared.
The objective was to evaluate the change in color, hardness, and roughness produced by carbamide peroxide (CP) at two different concentrations on two resins. The 16% or 45% CP was applied to 66 resin discs with and without Bis-GMA. The color was measured with a spectrophotometer, and ΔE and ΔE were calculated.
View Article and Find Full Text PDFIntroduction: Recently, calcium silicate-based sealers (CSSs) have gained popularity in endodontic practice due to their biocompatibility and antimicrobial properties. They are considered viable alternatives to epoxy resin-based sealers. With the increased use of CSSs and warm vertical compaction techniques in root canal treatment, evaluating the impact of heat on CSSs properties is essential, therefore this review aimed to present a qualitative synthesis of available in vitro studies assessing the impact of heat on the physical-chemical properties of CSSs.
View Article and Find Full Text PDFThe aim of this study was to assess the influence of eucalyptol and menthol on the cell viability, migration, and reactive oxygen species production of human gingival fibroblasts (GFs) in vitro. Three different concentrations of eucalyptol and menthol were prepared following ISO 10993-5 guidelines (1, 5, and 10 mM). GFs were isolated from extracted teeth from healthy donors.
View Article and Find Full Text PDFThe selective caries removal approach leads to the need to use materials with the ability to remineralize remaining partially demineralized dentin. Among the materials proposed are resin-modified glass ionomer cements (RMGICs). The aim of this systematic review was to evaluate, based on in vitro experimental studies, whether RMGICs are suitable for remineralizing affected dentin.
View Article and Find Full Text PDFThe aim of this in vitro study was to evaluate the remineralizing ability of three glass ionomers on demineralized dentin with different thicknesses and time periods. Fifty third molars were obtained and were sectioned into 1-, 2-, and 3-mm thick slices (n = 36 for each thickness). The specimens were demineralized with 18% EDTA for 2 h.
View Article and Find Full Text PDFObjectives: To perform a bibliometric analysis on silicate-based biomaterials in endodontics; to elucidate the evolution and distribution of scientific production regarding research on these biomaterials, the authors and institutions involved, and the most used descriptors/keywords in this field.
Materials And Methods: A general advanced broad search was performed in Web of Science Core Collection, using the terms "Silicate" and "Endod*." By means of the "Analyze Results" and "Citation Analysis" tools from Web of Science, bibliometric data were extracted.
Biocompatibility is an essential property for any vital pulp material that may interact with the dental pulp tissues. Accordingly, this study aimed to compare the chemical composition and ultrastructural morphology of Biodentine (Septodont, Saint Maur-des-Fosses, France), ProRoot MTA (Dentsply Tulsa Dental Specialties, Johnson City, TN, USA), and Bio-C Repair (Angelus, Londrina, PR, Brazil), as well as their biological effects on human dental pulp cells. Chemical element characterization of the materials was undertaken using scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX).
View Article and Find Full Text PDF