Publications by authors named "Ghiglione C"

Low diversity of pollinators and the modified composition of functional groups of bees have been proposed as the causes of pollination deficiency in cultivated Cucurbitaceae species. Functional groups of bees are determined by traits, such as body size, nesting site, and social behavior. The presence of bees with specific traits can be differentially affected by agricultural management practices.

View Article and Find Full Text PDF

This new dataset presents occurrence data for Porifera collected in the Ross Sea, mainly in the Terra Nova Bay area, and curated at the Italian National Antarctic Museum (MNA, section of Genoa). Specimens were collected in 331 different sampling stations at depths ranging from 17 to 1,100 meters in the framework of 17 different Italian Antarctic expeditions funded by the Italian National Antarctic Research Program (PNRA). A total of 807 specimens, belonging to 144 morphospecies (i.

View Article and Find Full Text PDF

Understanding how different cell types acquire their motile behaviour is central to many normal and pathological processes. border cells represent a powerful model for addressing this issue and to specifically decipher the mechanisms controlling collective cell migration. Here, we identify the Insulin/Insulin-like growth factor signalling (IIS) pathway as a key regulator in controlling actin dynamics in border cells, independently of its function in growth control.

View Article and Find Full Text PDF
Article Synopsis
  • * New species records for the Terra Nova Bay area include three previously undocumented species, raising the count from 15 to 18 species in that region.
  • * The identification of these new species involved both morphological and molecular analyses, and some specimens were digitally documented to create 3D models accessible for research and educational use.
View Article and Find Full Text PDF

Here we present distributional records for Tanaidacea specimens collected during several Antarctic expeditions to the Ross Sea: the Italian PNRA expeditions ("V", 1989/1990; "XI", 1995/1996; "XIV", 1998/1999; "XIX", 2003/2004; "XXV", 2009/2010) and the New Zealand historical (New Zealand Oceanographic Institute, NZOI, 1958-1961) and recent ("TAN0402 BIOROSS" voyage, 2004 and "TAN0802 IPY-CAML Oceans Survey 20/20" voyage, 2008) expeditions. Tanaidaceans were obtained from bottom samples collected at depths ranging from 16 to 3543 m by using a variety of sampling gears. On the whole, this contribution reports distributional data for a total of 2953 individuals belonging to 33 genera and 50 species.

View Article and Find Full Text PDF

When exposed to nutrient challenge, organisms have to adapt their physiology in order to balance reproduction with adult fitness. In mammals, ovarian follicles enter a massive growth phase during which they become highly dependent on gonadotrophic factors and nutrients. Somatic tissues play a crucial role in integrating these signals, controlling ovarian follicle atresia and eventually leading to the selection of a single follicle for ovulation.

View Article and Find Full Text PDF

Information regarding the molluscs in this dataset is based on the Rauschert dredge samples collected during the Latitudinal Gradient Program (LGP) on board the R/V "Italica" in the Ross Sea (Antarctica) in the austral summer 2004. A total of 18 epibenthic dredge deployments/samplings have been performed at four different locations at depths ranging from 84 to 515m by using a Rauschert dredge with a mesh size of 500μm. In total 8,359 specimens have been collected belonging to a total of 161 species.

View Article and Find Full Text PDF

Border Cells in the Drosophila ovaries are a useful genetic model for understanding the molecular events underlying epithelial cell motility. During stage 9 of egg chamber development they detach from neighboring stretched cells and migrate between the nurse cells to reach the oocyte. RNAi screening allowed us to identify the dapc1 gene as being critical in this process.

View Article and Find Full Text PDF

Small GTPases of the Ras-like (Ral) family are crucial for signalling functions in both normal and cancer cells; however, their role in a developing organism is poorly understood. Here, we identify the Drosophila Ral homologue RalA as a new key regulator of polar-cell differentiation during oogenesis. Polar cells have a crucial role in patterning the egg chamber and in recruiting border cells, which undergo collective and guided migration.

View Article and Find Full Text PDF

Domeless (Dome) is an IL-6-related cytokine receptor that activates a conserved JAK/STAT signalling pathway during Drosophila development. Despite good knowledge of the signal transduction pathway in several models, the role of receptor endocytosis in JAK/STAT activation remains poorly understood. Using both in vivo genetic analysis and cell culture assays, we show that ligand binding of Unpaired 1 (Upd1) induces clathrin-dependent endocytosis of receptor-ligand complexes and their subsequent trafficking through the endosomal compartment towards the lysosome.

View Article and Find Full Text PDF

The transmembrane protein Kekkon 1 (Kek1) has previously been shown to act in a negative feedback loop to downregulate the Drosophila Epidermal Growth Factor Receptor (DER) during oogenesis. We show that this protein plays a similar role in other DER-mediated developmental processes. Structure-function analysis reveals that the extracellular Leucine-Rich Repeat (LRR) domains of Kek1 are critical for its function through direct association with DER, whereas its cytoplasmic domain is required for apical subcellular localization.

View Article and Find Full Text PDF

In mammals, the JAK/STAT (Janus Kinase/Signal Transducer and Activator of Transcription) signaling pathway is activated in response to cytokines and growth factors to control blood cell development, proliferation and cell determination. In Drosophila, a conserved JAK/STAT signaling pathway controls segmentation in embryos, as well as blood cell development and other processes in larvae and adults. During embryogenesis, transduction of the Unpaired [Upd; also known as Outstretched (Os)] ligand through the JAK/STAT pathway requires Domeless, a putative membrane protein with distant homology to vertebrate type I cytokine receptors.

View Article and Find Full Text PDF

We have analyzed the mechanism of activation of the Epidermal growth factor receptor (Egfr) by the transforming growth factor (TGF) alpha-like molecule, Gurken (Grk). Grk is expressed in the oocyte and activates the Egfr in the surrounding follicle cells during oogenesis. We show that expression of either a membrane bound form of Grk (mbGrk), or a secreted form of Grk (secGrk), in either the follicle cells or in the germline, activates the Egfr.

View Article and Find Full Text PDF

We have identified the Drosophila transmembrane molecule kekkon 1 (kek1) as an inhibitor of the epidermal growth factor receptor (EGFR) and demonstrate that it acts in a negative feedback loop to modulate the activity of the EGFR tyrosine kinase. During oogenesis, kek1 is expressed in response to the Gurken/EGFR signaling pathway, and loss of kek1 activity is associated with an increase in EGFR signaling. Consistent with our loss-of-function studies, we demonstrate that ectopic overexpression of kek1 mimics a loss of EGFR activity.

View Article and Find Full Text PDF

In Drosophila, specification of embryonic terminal cells is controlled by the Torso receptor tyrosine kinase. Here, we analyze the molecular basis of positive (Y630) and negative (Y918) phosphotyrosine (pY) signaling sites on Torso. We find that the Drosophila homolog of RasGAP associates with pY918 and is a negative effector of Torso signaling.

View Article and Find Full Text PDF

We have examined the role in patterning of quantitative variations of MAPK activity in signaling from the Drosophila Torso (Tor) receptor tyrosine kinase (RTK). Activation of Tor at the embryonic termini leads to differential expression of the genes tailless and huckebein. We demonstrate, using a series of mutations in the signal transducers Corkscrew/SHP-2 and D-Raf, that quantitative variations in the magnitude of MAPK activity trigger both qualitatively and quantitatively distinct transcriptional responses.

View Article and Find Full Text PDF

In the sea urchin embryo, the animal-vegetal axis is defined before fertilization and different embryonic territories are established along this axis by mechanisms which are largely unknown. Significantly, the boundaries of these territories can be shifted by treatment with various reagents including zinc and lithium. We have isolated and characterized a sea urchin homolog of GSK3beta/shaggy, a lithium-sensitive kinase which is a component of the Wnt pathway and known to be involved in axial patterning in other embryos including Xenopus.

View Article and Find Full Text PDF

The hatching enzyme (HE) gene is the earliest zygotic gene expressed in the sea urchin embryo. To investigate the regulation of the HE gene activity, 5' flanking DNA and the 5' untranslated leader were inserted upstream of reporter genes whose expression was monitored in vivo during development after transfer into eggs. By deletion analysis we showed that no more than 3 kb of flanking sequence are required for correct expression of transgenes.

View Article and Find Full Text PDF

The HE gene is the earliest strictly zygotic gene activated during sea urchin embryogenesis. It is transiently expressed in a radially symmetrical domain covering the animal-most two-thirds of the blastula. The border of this domain, which is orthogonal to the primordial animal-vegetal axis, is shifted towards the animal pole in Li+-treated embryos.

View Article and Find Full Text PDF

Blastula protease 10 (BP10), a metalloprotease of the astacin family, is secreted at the blastula stage by the sea urchin embryo. The BP10 gene shows a precise temporal and spatial regulation during embryogenesis. It has been cloned from a sea urchin lambda genomic library and the transcription unit has been entirely sequenced.

View Article and Find Full Text PDF

The sea urchin embryo develops from an encased to a free-living larva by secreting at an early stage the hatching enzyme, a metalloprotease which hydrolyses a protective envelope derived from the egg extracellular matrix. Genomic clones containing the entire hatching enzyme gene were isolated from a lambda phage sea urchin library and the complete sequence of the transcription unit was determined. The hatching enzyme gene spans 6.

View Article and Find Full Text PDF

The expression of two zygotic genes (HE and BP10) during sea urchin embryogenesis was previously found to be early, transient, spatially restricted and controlled at the transcriptional level. Here we studied how the expression of these genes is affected when cell interactions are abolished by dissociating blastomeres and when development is perturbed by treatment with Li+. We found that in isolated blastomeres, transient transcriptional activity (HE) is unchanged and both genes apparently function in the appropriate cell type.

View Article and Find Full Text PDF

A cDNA clone coding for a sea urchin embryonic protein was isolated from a prehatching blastula lambda gt11 library. The predicted translation product is a secreted 64 x 10(3) Mr enzyme designated as BP10. The protein contains several domains: a signal peptide, a putative propeptide, a catalytic domain with an active center typical of a Zn(2+)-metalloprotease, an EGF-like domain and two internal repeats similar to repeated domains found in the C1s and C1r serine proteases of the complement cascade.

View Article and Find Full Text PDF

One familial case of ectodermal dysplasia of the Clouston's type is reported. The clinical picture consisted of hypotrichosis and dysonychia with normal sweating. The disease follows dominant autosomal transmission.

View Article and Find Full Text PDF