Materials (Basel)
January 2024
Residual stresses pose significant challenges in the powder bed fusion of metals using a laser (PBF-LB/M), impacting both the dimensional accuracy and mechanical properties. This study quantitatively analyzes deformation and residual stresses in additively manufactured Inconel 625. Investigating both as-built and stress-relieved states with varied scanning strategies (90°, 67°, strip, and 90° chessboard) in PBF-LB/M/IN625, distortion is evaluated using the bridge curvature method.
View Article and Find Full Text PDFThe study aimed to evaluate the tensile strength of additively manufactured (AMed) IN 625 using sub-sized test pieces and compare them to standard specimens. Cylindrical round coupons of varying diameters were manufactured along the -axis using the laser powder bed fusion technique and subjected to heat treatment. The simulation of the alloy solidification predicted the formation of several intermetallics and carbides under equilibrium conditions (slow cooling), apart from the γ phase (FCC).
View Article and Find Full Text PDFThis paper presents an experimental study on the influence of the main Laser Powder Bed Fusion (PBF-LB) process parameters on the density and surface quality of the IN 625 superalloy manufactured using the Lasertec 30 SLM machine. Parameters' influence was investigated within a workspace defined by the laser power (150-400 W), scanning speed (500-900 m/s), scanning strategy (90° and 67°), layer thickness (30-70 µm), and hatch distance (0.09-0.
View Article and Find Full Text PDFThe main drawbacks of the Laser Powder Bed Fusion (LPBF) process are the surface quality and dimensional accuracy of manufactured parts due to the edge and corner effects. These effects can be diminished by using an appropriate balance of the process parameters and scanning strategies. This paper focuses on the assessment of reducing the edge and corner effects that occur in additively manufactured IN 625 alloy via the LPBF technique by varying the hatch angle rotation (by 45°, 67°, and 90°) and volumetric energy density (VED), and using the laser top surface remelting technique (LSR).
View Article and Find Full Text PDFLaser defocusing was investigated to assess the influence on the surface quality, melt pool shape, tensile properties, and densification of selective laser melted (SLMed) IN 625. Negative (-0.5 mm, -0.
View Article and Find Full Text PDFMaterials (Basel)
October 2020
The notch sensitivity of additively manufactured IN 625 superalloy produces by laser powder bed fusion (LPBF) has been investigated by tensile testing of cylindrical test pieces. Smooth and V-notched test pieces with four different radii were tested both in as-built state and after a stress relief heat treatment for 1 h at 900 °C. Regardless of the notch root radius, the investigated alloy exhibits notch strength ratios higher than unity in both as-built and in stress-relieved states, showing that the additive manufactured IN 625 alloy is not prone to brittleness induced by the presence of V-notches.
View Article and Find Full Text PDFThe present study was focused on the assessment of microstructural anisotropy of IN 625 manufactured by selective laser melting (SLM) and its influence on the material's room temperature tensile properties. Microstructural anisotropy was assessed based on computational and experimental investigations. Tensile specimens were manufactured using four building orientations (along , -axis, and tilted at 45° in the plane) and three different scanning strategies (90°, 67°, and 45°).
View Article and Find Full Text PDF