The experimental research was focused on the investigation of valuable material from spent Ni-MH type AA batteries, namely the metal grid anodes and the black mass material (anode and cathode powder). The materials of interest were analyzed by X-ray fluorescence spectroscopy (XRF), ICP-OES (inductively coupled plasma optical emission spectrometry), optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). The analyzed grids have a high Fe content, but some of them correspond to the Invar alloy with approx.
View Article and Find Full Text PDFProperties such as lower melting temperature, good tensile strength, good reliability, and well creep resistance, together with low production cost, make the system Bi-Sn an ideal candidate for fine soldering in applications such as reballing or reflow. The first objective of the work was to determine the thermodynamic quantities of Bi and Sn using the electromotive force measurement method in an electrolytic cell (Gibbs' enthalpies of the mixture, integral molar entropies, and the integral molar excess entropies were determined) at temperatures of 600 K and 903 K. The second objective addressed is the comprehensive characterization of three alloy compositions that were selected and elaborated, namely Bi25Sn75, Bi50Sn50, and Bi75Sn25, and morphological and structural investigations were carried out on them.
View Article and Find Full Text PDFTitanium and its based alloys are frequently selected for designing biomedical implants and it is thus necessary to study as detailed as possible their corrosion behavior in biological solutions, such as those in the human body environment. In this paper, with the use of molecular orbital calculation, we designed and developed alloys in the Ti-19Mo-xW system (x = 7, 8, 9, and 10 wt%) and investigated the influence of different contents of tungsten on the behavior of Ti-19Mo-xW alloy samples following corrosion in simulated body fluid (SBF). The values of Bo¯ (bond order) and Md¯ (the metal-orbital energy level) were calculated for each alloy and correlations were established between Bo¯ and the content of tungsten.
View Article and Find Full Text PDFThe β-Ti alloys have attracted the attention of researchers due to their excellent properties and their remarkable biocompatibility. The present study evaluated the mechanical behavior analysis (hardness, compressive strength, and modulus of elasticity) of the Ti-15Mo-W system. For experimental research, we chose the TiMo15 biocompatible alloy as a starting material.
View Article and Find Full Text PDFIncreasing global lead consumption has been mainly supported by the acid battery manufacturing industry. As the lead demand will continue to grow, to provide the necessary lead will require an efficient approach to recycling lead acid batteries. In this paper was performed a mathematical modeling of the process parameters for lead recovery from spent lead-acid batteries.
View Article and Find Full Text PDFHigh purity electrolytic manganese dioxide (EMD) is the main raw material used for manufacturing of zinc and manganese based portable batteries (alkaline with manganese AlMn and zinc carbon Zn-C). Lately, due to the progressive depletion of MnO(2) natural resources, the quantity of artificially electrolytic produced MnO(2) has started to increase to satisfy the demand. This paper describes an electrolytic process for the simultaneous production of the following components:The electrolysis process was conducted in a specialized laboratory facility.
View Article and Find Full Text PDFRev Med Chir Soc Med Nat Iasi
June 2011
The aim of this paper is to summarize few aspects and underline some difficulties that hemocompatibility testing come up. The purpose of hemocompatibility testing is to look for possible undesirable changes in the blood caused directly by a medical device, by chemicals leaching from a device or biomaterials. Undesirable effects of device materials on the blood may include alterations in coagulation parameters, thrombus formation, hemolysis, and immunological changes.
View Article and Find Full Text PDFComputer models were developed to simulate the capture and subsequent deposition of magnetic microparticles (MMPs) in a blood vessel adjacent to a ferromagnetic wire (e.g., acupuncture needle) magnetized by a uniform external magnetic field.
View Article and Find Full Text PDF