We reviewed the many discoveries in cell biology, made since the 17 century, which have been based on red blood cells (RBCs). The advances in molecular and structural biology in the past 40 years have enabled the discovery with these cells, most notably, of the first water channel protein (WCP) called today aquaporin1 (AQP1). The main aim of our work reviewed was to examine by light and electron microscopy a very wide range of RBCs from reptiles, birds, monotremes, marsupials and placentals, in order to estimate from these images the RBC cell volume and surface area.
View Article and Find Full Text PDFAquaporins (AQPs) are a family of membrane water channel proteins that control osmotically-driven water transport across cell membranes. Recent studies have focused on the assessment of fluid flux regulation in relation to the biological processes that maintain mesenchymal stem cell (MSC) physiology. In particular, AQPs seem to regulate MSC proliferation through rapid regulation of the cell volume.
View Article and Find Full Text PDFThe morphology and diffusional water permeability (P d) of red blood cells (RBCs) from green sea turtle (GST) (Chelonia mydas) are presented for the first time. The RBCs had an ellipsoidal shape with full-axis lengths (diameters): D = 14.4 μm; d = 10.
View Article and Find Full Text PDFNMR measurements of the diffusional permeability of the human adult red blood cell (RBC) membrane to water (P(d)) and of the activation energy (E(a,d)) of the process furnished values of P(d) ~ 4 × 10(-3) cm/s at 25 °C and ~6.1 × 10(-3) cm/s at 37 °C, and E(a,d) ~ 26 kJ/mol. Comparative NMR measurements for other species showed: (1) monotremes (echidna and platypus), chicken, little penguin, and saltwater crocodile have the lowest P(d) values; (2) sheep, cow, and elephant have P(d) values lower than human P(d) values; (3) cat, horse, alpaca, and camel have P(d) values close to those of humans; (4) guinea pig, dog, dingo, agile wallaby, red-necked wallaby, Eastern grey kangaroo, and red kangaroo have P(d) values higher than those of humans; (5) mouse, rat, rabbit, and "small and medium size" marsupials have the highest values of P(d) (>8.
View Article and Find Full Text PDFAfter a decade of work on the water permeability of red blood cells (RBC) Benga group in Cluj-Napoca, Romania, discovered in 1985 the first water channel protein in the RBC membrane. The discovery was reported in publications in 1986 and reviewed in subsequent years. The same protein was purified by chance by Agre group in Baltimore, USA, in 1988, who called in 1991 the protein CHIP28 (CHannel forming Integral membrane Protein of 28 kDa), suggesting that it may play a role in linkage of the membrane skeleton to the lipid bilayer.
View Article and Find Full Text PDFMol Aspects Med
February 2013
A water channel protein (WCP) or a water channel can be defined as a transmembrane protein that has a specific three-dimensional structure with a pore that provides a pathway for water permeation across biological membranes. The pore is formed by two highly conserved regions in the amino acid sequence, called NPA boxes (or motifs) with three amino acid residues (asparagine-proline-alanine, NPA) and several surrounding amino acids. The NPA boxes have been called the "signature" sequence of WCPs.
View Article and Find Full Text PDFAs part of a programme of comparative measurements of Pd (diffusional water permeability) the RBCs (red blood cells) from an aquatic monotreme, platypus (Ornithorhynchus anatinus), and an aquatic reptile, saltwater crocodile (Crocodylus porosus) were studied. The mean diameter of platypus RBCs was estimated by light microscopy and found to be approximately 6.3 microm.
View Article and Find Full Text PDFAs part of a programme of comparative measurements of Pd (diffusional water permeability) the RBCs (red blood cells) from dingo (Canis familiaris dingo) and greyhound dog (Canis familiaris) were studied. The morphologies of the dingo and greyhound RBCs [examined by light and SEM (scanning electron microscopy)] were found to be very similar, with regard to aspect ratio and size; the mean diameters were estimated to be the same (approximately 7.2 microm) for both dingo and greyhound RBCs.
View Article and Find Full Text PDFThe water diffusional permeability (P(d)) of red blood cells (RBC) from agile wallaby (Macropus agilis), red-necked wallaby (Macropus rufogriseus) and Goodfellow's tree kangaroo (Dendrolagus goodfellowi) was monitored using an Mn(2+)-doping (1)H nuclear magnetic resonance (NMR) technique at 400 MHz. The P(d) (cm s(-1)) values of agile wallaby RBCs were 7.5 x 10(-3) at 25 degrees C, 9 x 10(-3) at 30 degrees C, 11 x 10(-3) at 37 degrees C, and 13 x 10(-3) at 42 degrees C.
View Article and Find Full Text PDFWater channels or water channel proteins (WCPs) are transmembrane proteins that have a specific three-dimensional structure with a pore that can be permeated by water molecules. WCPs are large families (over 450 members) that are present in all kingdoms of life. The first WCP was discovered in the human red blood cell (RBC) membrane in 1980s.
View Article and Find Full Text PDFBackground: Cystic fibrosis (CF) is produced by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator Gene (CFTR) gene.
Methods: One hundred twenty eight patients with CF were analysed for mutations in the CFTR gene in order to establish the frequency of CF mutations in the Romanian population. The chief methods of analysis were polymerase chain reaction (PCR) of DNA extracted from blood and electrophoresis of PCR products.
Aquaporins are now known to mediate the rapid exchange of water across the plasma membranes of diverse cell types. This exchange has been studied and kinetically characterized in red blood cells (erythrocytes; RBC) from many animal species. In recent years, a favoured method has been one based on NMR spectroscopy.
View Article and Find Full Text PDFThis invited review briefly outlines the importance of membrane water permeability, highlights the landmarks leading to the discovery of water channels. After a decade of systematic studies on water channels in human RBC Benga's group discovered in 1985 the presence and location of the water channel protein among the polypeptides migrating in the region of 35-60 kDa on the electrophoretogram of RBC membrane proteins. The work was extended and reviewed in several articles.
View Article and Find Full Text PDFIf we compare aquaporin (as a proteic pathway for water permeation across biological membranes) with a child we can say that he had a very long gestation period. His possible existence was predicted for a long time (Overton in 1985, Stein and Danielli in 1956), some of his features (transport of water and its reversible inhibition) were assigned by Macey and Farmer in 1970, however this child was first detected by Benga and coworkers in 1986. We clearly demonstrated for the first time the presence and location of a water channel at the human RBC membrane among the polypeptides migrating in the region having 35-60 kDa on the electrophoretogram of RBC membranes, labeled with 203Hg-PCMBS in the conditions of specific inhibition of water diffusion; I suggested that a minor membrane protein that binds PCMBS is involved in water transport and also indicated the way in which the specific protein could be further characterized: by purification and reconstitution in liposomes.
View Article and Find Full Text PDF