Publications by authors named "Ghebrehiwet B"

The plaques associated with Alzheimer's disease are formed as a result of the aggregation of Aβ peptides, which vary in length from 38 to 43 amino acids. The 1-40 peptide is the most abundant, while the 1-42 peptide appears to be the most destructive to neurons and/or glial cells in a variety of assays. We have demonstrated that aggregated Aβ, a state prior to plaque formation, will activate the plasma bradykinin-forming pathway when tested in vitro.

View Article and Find Full Text PDF

Background: Hereditary angioedema (HAE) is a rare inherited disorder that predisposes an individual to develop vasogenic edema. Bradykinin release, which increases vascular permeability, results in angioedema. C1 esterase inhibitor (C1-INH) is a major regulator of critical enzymes involved in bradykinin generation and mutations in genes that encode the C1 inhibitor of complement factor 1, which prevent its synthesis (type I HAE), form a dysfunctional protein (type II HAE), or have normal functioning C1-INH (type III HAE, aka HAE-III).

View Article and Find Full Text PDF

Understanding at the molecular level of the cell biology of tumors has led to significant treatment advances in the past. Despite such advances however, development of therapy resistance and tumor recurrence are still unresolved major challenges. This therefore underscores the need to identify novel tumor targets and develop corresponding therapies to supplement existing biologic and cytotoxic approaches so that a deeper and more sustained treatment responses could be achieved.

View Article and Find Full Text PDF
Article Synopsis
  • Anaphylaxis is a serious allergic reaction that affects multiple body systems, usually the skin, lungs, heart, and gastrointestinal tract, and can cause severe symptoms like shock or airway obstruction.
  • There are two types of triggers: immunologic, which involves the binding of foreign antigens to IgE on mast cells and basophils, and non-immunologic, which can occur through various mechanisms including direct activation of mast cells or immune complex activation.
  • The report highlights the role of the bradykinin-forming cascade in severe anaphylaxis symptoms and discusses how disruptions in bradykinin metabolism can contribute to airway obstruction and significant complications.
View Article and Find Full Text PDF

Complement component C1q can act as a pro-tumorigenic factor in the tumor microenvironment (TME). The TME in malignant pleural mesothelioma (MPM) is rich in C1q and hyaluronic acid (HA), whose interaction enhances adhesion, migration and proliferation of malignant cells. HA-bound C1q is also capable of modulating HA synthesis.

View Article and Find Full Text PDF

Background: Vascular diseases are highly associated with inflammation and thrombosis. Elucidating links between these two processes may provide a clearer understanding of these diseases, allowing for the design of more effective treatments. The activation of complement component 1 (C1) is a crucial contributor to innate immunity and is associated with significant concentrations of circulating C1q.

View Article and Find Full Text PDF

Human high molecular weight kininogen (HK) is the substrate from which bradykinin is released as a result of activation of the plasma "contact" system, a cascade that includes the intrinsic coagulation pathway, and a fibrinolytic pathway leading to the conversion of plasminogen to plasmin. Its distinction from low molecular weight kininogen (LK) was first made clear in studies of bovine plasma. While early studies did suggest two kininogens in human plasma also, their distinction became clear when plasma deficient in HK or both HK and LK were discovered.

View Article and Find Full Text PDF

The protein gC1qR/C1qBP/HABP-1 plays an essential role in mitochondrial biogenesis, but becomes localized at the cellular surface in numerous pathophysiological states. When this occurs on endothelial cells, surface-exposed gC1qR activates the classical pathway of complement. It also promotes assembly of a multi-protein complex comprised of coagulation factor XII (FXII), pre-kallikrein (PK), and high-molecular weight kininogen (HMWK) that activates the contact system and the kinin-generating system.

View Article and Find Full Text PDF

The origin of the impaired CD4 T-cell response and immunodeficiency of HIV-infected patients is still only partially understood. We recently demonstrated that PLA2G1B phospholipase synergizes with the HIV gp41 envelope protein in HIV viremic plasma to induce large abnormal membrane microdomains (aMMDs) that trap and inactivate physiological receptors, such as those for IL-7. However, the mechanism of regulation of PLA2G1B activity by the cofactor gp41 is not known.

View Article and Find Full Text PDF

Tumorigenesis has long been linked to the evasion of the immune system and the uncontrolled proliferation of transformed cells. The complement system, a major arm of innate immunity, is a key factor in the progression of cancer because many of its components have critical regulatory roles in the tumor microenvironment. For example, complement anaphylatoxins directly and indirectly inhibit antitumor T-cell responses in primary and metastatic sites, enhance proliferation of tumor cells, and promote metastasis and tumor angiogenesis.

View Article and Find Full Text PDF

Infection with SARS-CoV-2 triggers the simultaneous activation of innate inflammatory pathways including the complement system and the kallikrein-kinin system (KKS) generating in the process potent vasoactive peptides that contribute to severe acute respiratory syndrome (SARS) and multi-organ failure. The genome of SARS-CoV-2 encodes four major structural proteins - the spike (S) protein, nucleocapsid (N) protein, membrane (M) protein, and the envelope (E) protein. However, the role of these proteins in either binding to or activation of the complement system and/or the KKS is still incompletely understood.

View Article and Find Full Text PDF

Angioedema is characterized by swelling of the skin or mucous membranes. Overproduction of the vasodilator bradykinin (BK) is an important contributor to the disease pathology, which causes rapid increase in vascular permeability. BK formation on endothelial cells results from high molecular weight kininogen (HK) interacting with gC1qR, the receptor for the globular heads of C1q, the first component of the classical pathway of complement.

View Article and Find Full Text PDF

Introduction: We have experienced a pandemic induced by the interaction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) structural proteins with innate structures. These interactions are especially prevalent for patients with underlying pathologies, such as cardiovascular diseases. However, there has been limited work to uncover the range of responses induced by SARS-CoV-2 structural proteins.

View Article and Find Full Text PDF

Chronic meningoencephalitis is caused by and is treated in many parts of the world with fluconazole (FLC) monotherapy, which is associated with treatment failure and poor outcome. In the host, propagates predominantly under low glucose growth conditions. We investigated whether low glucose, mimicked by growing in synthetic media (SM) with 0.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for many pathological processes, including altered vascular disease development, dysfunctional thrombosis and a heightened inflammatory response. However, there is limited work to determine the underlying cellular responses induced by exposure to SARS-CoV-2 structural proteins. Thus, our objective was to investigate how human arterial adventitial fibroblasts inflammation, thrombosis and diabetic disease markers are altered in response to Spike, Nucleocapsid and Membrane-Envelope proteins.

View Article and Find Full Text PDF

Nucleotide-binding oligomerization domain containing protein 2 (NOD2) is a cytosolic receptor. Both NOD2 and vasoactive intestinal peptide (VIP) are critical in regulation of immune and inflammatory response. Yao syndrome (YAOS, OMIM 617321) is an autoinflammatory disease associated with specified NOD2 mutations.

View Article and Find Full Text PDF

Rapid proliferation of cancer cells is enabled by favoring aerobic glycolysis over mitochondrial oxidative phosphorylation (OXPHOS). P32 (/gC1qR) is essential for mitochondrial protein translation and thus indispensable for OXPHOS activity. It is ubiquitously expressed and directed to the mitochondrial matrix in almost all cell types with an excessive up-regulation of p32 expression reported for tumor tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Cell differentiation in the colon relies on switching from glycolysis to mitochondrial oxidation, with dysfunction in these processes linked to ulcerative colitis (UC) pathology.* -
  • Research showed that decreased expression of p32, a key player in oxidative phosphorylation, correlates with impaired goblet cell differentiation in UC patients, leading to a deficiency in mucus production.* -
  • Nutritional interventions, like a high-protein diet, can boost p32 levels and promote goblet cell differentiation in mice, suggesting potential therapeutic strategies for UC management.*
View Article and Find Full Text PDF

Genetic deficiency in C1q is a strong susceptibility factor for systemic lupus erythematosus (SLE). There are two major hypotheses that potentially explain the role of C1q in SLE. The first postulates that C1q deficiency abrogates apoptotic cell clearance, leading to persistently high loads of potentially immunogenic self-antigens that trigger autoimmune responses.

View Article and Find Full Text PDF

Self-sustained cell proliferation constitutes one hallmark of cancer enabled by aerobic glycolysis which is characterized by imbalanced glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) activity, named the Warburg effect. The C1q binding protein (; gC1qR) is pivotal for mitochondrial protein translation and thus OXPHOS activity. Due to its fundamental role in balancing OXPHOS and glycolysis, mice display embryonic lethality, while gC1qR is excessively up-regulated in cancer.

View Article and Find Full Text PDF

gC1qR is highly expressed in breast cancer and plays a role in cancer cell proliferation. This study explored therapy with gC1qR monoclonal antibody 60.11, directed against the C1q binding domain of gC1qR, in a murine orthotopic xenotransplant model of triple negative breast cancer.

View Article and Find Full Text PDF

In a stunningly short period of time, the unexpected coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has turned the unprepared world topsy-turvy. Although the rapidity with which the virus struck was indeed overwhelming, scientists throughout the world have been up to the task of deciphering the mechanisms by which SARS-CoV-2 induces the multisystem and multiorgan inflammatory responses that, collectively, contribute to the high mortality rate in affected individuals. In this issue of the JCI, Skendros and Mitsios et al.

View Article and Find Full Text PDF