Publications by authors named "Ghebreab S"

Selective brain responses to objects arise within a few hundreds of milliseconds of neural processing, suggesting that visual object recognition is mediated by rapid feed-forward activations. Yet disruption of neural responses in early visual cortex beyond feed-forward processing stages affects object recognition performance. Here, we unite these discrepant findings by reporting that object recognition involves enhanced feedback activity (recurrent processing within early visual cortex) when target objects are embedded in natural scenes that are characterized by high complexity.

View Article and Find Full Text PDF

Meta-analytic studies suggest that dyslexia is characterized by subtle and spatially distributed variations in brain anatomy, although many variations failed to be significant after corrections of multiple comparisons. To circumvent issues of significance which are characteristic for conventional analysis techniques, and to provide predictive value, we applied a machine learning technique--support vector machine--to differentiate between subjects with and without dyslexia. In a sample of 22 students with dyslexia (20 women) and 27 students without dyslexia (25 women) (18-21 years), a classification performance of 80% (p < 0.

View Article and Find Full Text PDF

Attention is thought to impose an informational bottleneck on vision by selecting particular information from visual scenes for enhanced processing. Behavioral evidence suggests, however, that some scene information is extracted even when attention is directed elsewhere. Here, we investigated the neural correlates of this ability by examining how attention affects electrophysiological markers of scene perception.

View Article and Find Full Text PDF

Lightness, or perceived reflectance of a surface, is influenced by surrounding context. This is demonstrated by the Simultaneous Contrast Illusion (SCI), where a gray patch is perceived lighter against a black background and vice versa. Conversely, assimilation is where the lightness of the target patch moves toward that of the bounding areas and can be demonstrated in White's effect.

View Article and Find Full Text PDF

The human visual system is assumed to transform low level visual features to object and scene representations via features of intermediate complexity. How the brain computationally represents intermediate features is still unclear. To further elucidate this, we compared the biologically plausible HMAX model and Bag of Words (BoW) model from computer vision.

View Article and Find Full Text PDF

The visual system processes natural scenes in a split second. Part of this process is the extraction of "gist," a global first impression. It is unclear, however, how the human visual system computes this information.

View Article and Find Full Text PDF

The visual world is complex and continuously changing. Yet, our brain transforms patterns of light falling on our retina into a coherent percept within a few hundred milliseconds. Possibly, low-level neural responses already carry substantial information to facilitate rapid characterization of the visual input.

View Article and Find Full Text PDF

Texture may provide important clues for real world object and scene perception. To be reliable, these clues should ideally be invariant to common viewing variations such as changes in illumination and orientation. In a large image database of natural materials, we found textures with low-level contrast statistics that varied substantially under viewing variations, as well as textures that remained relatively constant.

View Article and Find Full Text PDF

The visual appearance of natural scenes is governed by a surprisingly simple hidden structure. The distributions of contrast values in natural images generally follow a Weibull distribution, with beta and gamma as free parameters. Beta and gamma seem to structure the space of natural images in an ecologically meaningful way, in particular with respect to the fragmentation and texture similarity within an image.

View Article and Find Full Text PDF

Segmentation of the spine directly from three-dimensional (3-D) image data is desirable to accurately capture its morphological properties. We describe a method that allows true 3-D spinal image segmentation using a deformable integral spine model. The method learns the appearance of vertebrae from multiple continuous features recorded along vertebra boundaries in a given training set of images.

View Article and Find Full Text PDF

We propose a method for concept-based medical image retrieval that is a superset of existing semantic-based image retrieval methods. We conceive of a concept as an incremental and interactive formalization of the user's conception of an object in an image. The premise is that such a concept is closely related to a user's specific preferences and subjectivity and, thus, allows to deal with the complexity and content-dependency of medical image content.

View Article and Find Full Text PDF