Heteroprotein complex coacervation has potential for a wide range of applications. However, the sensitivity of coacervates to slight changes in physico-chemical conditions may constitute a technological barrier for their development and deserves to be better understood. In this study, the rheological properties of β-lactoglobulin/lactoferrin (βLG/LF) heteroprotein complex coacervates were investigated with respect to narrow changes of temperature (5-40 °C) and ionic strength (0 to 10 mM added NaCl).
View Article and Find Full Text PDFIn this report, a versatile method is demonstrated to create colloidal suprastructures by assembly and supramolecular interlinking of microgels using droplet-based microfluidics. The behavior of the microgels is systematically investigated to evaluate the influence of their concentration on their distribution between the continuous, the droplet phase, and the interface. At low concentrations, microgels are mainly localized at the water-oil interface whereas an excess of microgels results, following the complete coverage of the water-oil interface, in their distribution in the continuous phase.
View Article and Find Full Text PDFThe restricted porosity of most hydrogels established for in vitro 3D tissue engineering applications limits embedded cells with regard to their physiological spreading, proliferation, and migration behavior. To overcome these confines, porous hydrogels derived from aqueous two-phase systems (ATPS) are an interesting alternative. However, while developing hydrogels with trapped pores is widespread, the design of bicontinuous hydrogels is still challenging.
View Article and Find Full Text PDFFibrin-collagen hydrogel blends exhibit high potential for tissue engineering applications. However, it is still unclear whether the underlying cross-linking mechanisms are of chemical or physical nature. It is here hypothesized that chemical cross-linkers play a negligible role and that instead pH and thrombin concentration are decisive for synthetizing blends with high stiffness and hydrolytic stability.
View Article and Find Full Text PDFFibrin-gelatin hydrogel blends exhibit high potential for tissue engineering applications. However, the means to tailor these blends in order to control their properties, thus opening up a broad range of new target applications, have been insufficiently explored. We hypothesized that a controlled heat treatment of gelatin prior to blend synthesis enables control of hydrolytic swelling and shrinking, stiffness, and microstructural architecture of fibrin-gelatin based hydrogel blends while providing tremendous long-term stability.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2021
Polymeric hydrogels are currently at the center of research due to their particular characteristics. They have tunable physical, chemical, and biological properties making them a material of choice for a large range of applications. Polymer-composite and nanocomposite hydrogels were developed to enhance the native hydrogel's properties and to include numerous functionalities.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2021
Nanofibres are an interesting phase into which amphiphilic molecules can self-assemble. Described for a large number of synthetic lipids, they were seldom reported for natural lipids like microbial amphiphiles, known as biosurfactants. In this work, we show that the palmitic acid congener of sophorolipids (SLC16:0), one of the most studied families of biosurfactants, spontaneously forms a self-assembled fibre network (SAFiN) at pH below 6 through a pH jump process.
View Article and Find Full Text PDFHypothesis: Polyelectrolyte-surfactant complexes (PESCs) have long been employed as oil-in-water (o/w) emulsions stabilizers, but never in the structure of colloidal complex coacervates providing a Pickering effect. The complexed state of PESCs could make them unsuitable o/w Pickering emulsifiers, which instead require a balance between colloidal structure and stability, amphiphilicity and wettability. Here we hypothesize that PESCs coacervates are efficient Pickering stabilizers.
View Article and Find Full Text PDFWhat is the pressure generated by ice crystals during ice-templating? This work addresses this crucial question by estimating the pressure exerted by oriented ice columns on a supramolecular probe composed of a lipid lamellar hydrogel during directional freezing. This process, also known as freeze-casting, has emerged as a unique processing technique for a broad class of organic, inorganic, soft, and biological materials. Nonetheless, the pressure exerted during and after crystallization between two ice columns is not known, despite its importance with respect to the fragility of the frozen material, especially for biological samples.
View Article and Find Full Text PDFLipid lamellar hydrogels are rare soft fluids composed of a phospholipid lamellar phase instead of fibrillar networks. The mechanical properties of these materials are controlled by defects, induced by local accumulation of a polymer or surfactant in a classical lipid bilayer. Herein we report a new class of lipid lamellar hydrogels composed of one single bolaform glycosylated lipid obtained by fermentation.
View Article and Find Full Text PDFGiven the importance of the extracellular medium during tissue formation, it was wise to develop an artificial structure that mimics the extracellular matrix while having improved physico-chemical properties. That is why the choice was focused on gelatin methacryloyl (GelMA), an inexpensive biocompatible hydrogel. Physicochemical and mechanical properties were improved by the incorporation of nanoparticles developed from two innovative fabrication processes: High shear fluid and low frequencies/high frequencies ultrasounds.
View Article and Find Full Text PDFTo enhance physico-chemical properties of alginate liquid-core capsules, shellac was incorporated into the membrane (composite capsules) or as an additional external layer (coated capsules). The influence of pH, coating time, shellac concentration and preparation mechanism (acid or calcium precipitation) were investigated. Results showed that shellac significantly influenced the capsules properties.
View Article and Find Full Text PDFHypothesis: To enhance physicochemical properties of alginate aqueous-core capsules, conventional strategies were focused in literature on designing composite and coated capsules. In the present study, own effect of liquid-core composition on mechanical and release properties was investigated.
Experiments: Capsules were prepared by dripping a CaCl2 solution into an alginate gelling solution.
Although green macro-algae represent a renewable and highly abundant biomass, they remain poorly exploited in terms of carbohydrate polymers compared to red and brown ones and other lignocellulosic materials. In this study, cellulose from the green macro-algae Enteromorpha sp. was isolated, physico-chemically characterized and enzymatically functionalized.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2015
Hypothesis: Alginate capsules have several applications. Their functionality depends considerably on their permeability, chemical and mechanical stability. Consequently, the creation of composite system by addition of further components is expected to control mechanical and release properties of alginate capsules.
View Article and Find Full Text PDF