This paper introduces a design of experiments (DOE) approach for method optimisation in hydrophilic interaction chromatography (HILIC). An optimisation strategy for the separation of acetylsalicylic acid, its major impurity salicylic acid and ascorbic acid in pharmaceutical formulations by HILIC is presented, with the aid of response surface methodology (RSM) and Derringer's desirability function. A Box-Behnken experimental design was used to build the mathematical models and then to choose the significant parameters for the optimisation by simultaneously taking both resolution and retention time as the responses.
View Article and Find Full Text PDFA rapid and simple reversed-phase high-performance liquid chromatographic method using a monolithic column was developed and validated for the separation and quantification of myricetin, quercetin, and kaempferol in Rhus coriaria L. The method employed the isocratic mobile phase acetonitrile-10 mM potassium dihydrogen orthophosphate buffer adjusted to pH 3.0 using orthophosphoric acid (38 + 62, v/v) at a flow rate of 4.
View Article and Find Full Text PDFA simple isocratic reversed-phase high-performance liquid chromatographic method (RP-HPLC) was developed for the simultaneous determination of buprenorphine hydrochloride, naloxone hydrochloride dihydrate and its major impurity, noroxymorphone, in pharmaceutical tablets. The chromatographic separation was achieved with 10 mmol L(-1) potassium phosphate buffer adjusted to pH 6.0 with orthophosphoric acid and acetonitrile (17:83, v/v) as mobile phase, a C-18 column, Perfectsil Target ODS3 (150 mm x 4.
View Article and Find Full Text PDF