Publications by authors named "Ghazal Shammas"

Introduction: In spondyloarthritis (SpA), an increased type 3 immune response, including T helper cells (Th) 17 excess, is observed in both human and SpA animal models, such as the HLA-B27/human β2-microglobulin transgenic rat (B27-rat).

Methods: To investigate this unexplained Th17-biased differentiation, we focused on understanding the immunobiology of B27-rat naive CD4 T cells (Tn).

Results: We observed that neutrally stimulated B27-rat Tn developed heightened Th17 profile even before disease onset, suggesting an intrinsic proinflammatory predisposition.

View Article and Find Full Text PDF

B cells contribute to the pathogenesis of both cellular- and humoral-mediated central nervous system (CNS) inflammatory diseases through a variety of mechanisms. In such conditions, B cells may enter the CNS parenchyma and contribute to local tissue destruction. It remains unexplored, however, how infection and autoimmunity drive transcriptional phenotypes, repertoire features, and antibody functionality.

View Article and Find Full Text PDF

Adaptive immune repertoires are composed by the ensemble of B and T-cell receptors within an individual, reflecting both past and current immune responses. Recent advances in single-cell sequencing enable recovery of the complete adaptive immune receptor sequences in addition to transcriptional information. Here, we recovered transcriptome and immune repertoire information for polyclonal T follicular helper cells following lymphocytic choriomeningitis virus (LCMV) infection, CD8+ T cells with binding specificity restricted to two distinct LCMV peptides, and B and T cells isolated from the nervous system in the context of experimental autoimmune encephalomyelitis.

View Article and Find Full Text PDF

In chronic inflammatory diseases of the central nervous system (CNS), immune cells persisting behind the blood-brain barrier are supposed to promulgate local tissue destruction. The drivers of such compartmentalized inflammation remain unclear, but tissue-resident memory T cells (T) represent a potentially important cellular player in this process. Here, we investigated whether resting CD8 T persisting after cleared infection with attenuated lymphocytic choriomeningitis virus (LCMV) can initiate immune responses directed against cognate self-antigen in the CNS.

View Article and Find Full Text PDF

The present work introduces a facile synthetic route to embed phosphorescent K[{MoI}I] and (nBuN)[{MoI}(CHCOO)] clusters (C) onto silica-water interface of amino-decorated silica nanoparticles (SNs, 60 ± 6 nm). The assembled C-SNs gain in the luminescence intensity, which remains stable within three months after their assembly. High uptake capacity of the clusters (8700 of K[{MoI}I] and 6500 of (nBuN)[{MoI}(CHCOO)] per the each nanoparticle) derives from ionic self-assembly and coordination bonds between the cluster complexes and ionic (amino- and siloxy-) groups at the silica surface.

View Article and Find Full Text PDF