Publications by authors named "Ghazal Banisadr"

Background: IPX203 is a novel oral extended-release formulation of carbidopa/levodopa (CD/LD) developed to address the short half-life of immediate-release CD/LD. In the phase 3 RISE-PD trial, IPX203 significantly improved "Good On" time in patients with Parkinson's disease compared with immediate-release CD/LD.

Objectives: To evaluate the safety and efficacy of IPX203 in an open-label extension of the pivotal phase 3 study.

View Article and Find Full Text PDF

Importance: Levodopa has a short half-life and a limited window of opportunity for absorption in the proximal small intestine. IPX203 is an oral, extended-release formulation of carbidopa-levodopa developed to address these limitations.

Objective: To assess the efficacy and safety of IPX203 vs immediate-release carbidopa-levodopa in patients with Parkinson disease who are experiencing motor fluctuations.

View Article and Find Full Text PDF

Introduction: IPX203 is a novel oral extended-release (ER) formulation of carbidopa (CD) and levodopa (LD) developed to address the short half-life and limited area for absorption of LD in the gastrointestinal tract. This paper presents the formulation strategy of IPX203 and its relationship to the pharmacokinetics (PK) and pharmacodynamic profile of IPX203 in Parkinson's disease (PD) patients.

Methods: IPX203 was developed with an innovative technology containing immediate-release (IR) granules and ER beads that provides rapid LD absorption to achieve desired plasma concentration and maintaining it within the therapeutic range for longer than can be achieved with current oral LD formulations.

View Article and Find Full Text PDF

Background: The introduction of carbidopa-levodopa extended-release (CD-LD ER) capsules (Rytary®) did not go as smoothly as expected, largely due to difficulty around dose conversion from available immediate-release (IR) levodopa (LD) formulations. The dose conversion table in the CD-LD ER prescribing information was similar to the table used in the pivotal clinical trial and is considered by many prescribing HCPs to be less than optimal. By the end of the dose conversion period in that trial, dosing in 76% of subjects was adjusted for symptom control; roughly 60% of patients required a higher dose and about half required more frequent administration than the recommended TID dosing.

View Article and Find Full Text PDF

The full role of adult hippocampal neurogenesis (AHN) remains to be determined, yet it is implicated in learning and emotional functions, and is disrupted in negative mood disorders. Recent evidence indicates that AHN is decreased in persistent pain consistent with the idea that chronic pain is a major stressor, associated with negative moods and abnormal memories. Yet, the role of AHN in development of persistent pain has remained unexplored.

View Article and Find Full Text PDF

The chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 acting via its G-protein coupled receptor (GPCR) CXCR4 has been implicated in neurogenesis, neuromodulation, brain inflammation, HIV-1 encephalopathy and tumor growth. CXCR7 was identified as an alternate receptor for SDF-1/CXCL12. Characterization of CXCR7-deficient mice demonstrated a role for CXCR7 in fetal endothelial biology, cardiac development, and B-cell localization.

View Article and Find Full Text PDF

Excessive infiltration of leukocytes and the elaboration of inflammatory cytokines are believed to be responsible for the observed damage to neurons and oligodendrocytes during multiple sclerosis (MS). Blocking adhesion molecules or preventing the effects of chemotactic mediators such as chemokines can be exploited to prevent immune cell recruitment to inflamed tissues. An anti-α4 integrin antibody (anti-VLA-4mAb/natalizumab (Tysabri®)) has been used as a treatment for MS and reduces leukocyte influx into the brain.

View Article and Find Full Text PDF

Herpes simplex virus (HSV) pathogenesis in mice differs based on availability of the principal entry receptors herpesvirus entry mediator (HVEM) and nectin-1 in a manner dependent upon route of inoculation. After intravaginal or intracranial inoculation of adult mice, nectin-1 is a major mediator of neurologic disease, while the absence of either receptor attenuates disease after ocular infection. We tested the importance of receptor availability and route of infection on disease in mouse models of neonatal HSV.

View Article and Find Full Text PDF

Chronic pain patients exhibit increased anxiety, depression, and deficits in learning and memory. Yet how persistent pain affects the key brain area regulating these behaviors, the hippocampus, has remained minimally explored. In this study we investigated the impact of spared nerve injury (SNI) neuropathic pain in mice on hippocampal-dependent behavior and underlying cellular and molecular changes.

View Article and Find Full Text PDF

Chemokines are small, secreted proteins that have been shown to be important regulators of leukocyte trafficking and inflammation. All the known effects of chemokines are transduced by action at a family of G protein coupled receptors. Two of these receptors, CCR5 and CXCR4, are also known to be the major cellular receptors for HIV-1.

View Article and Find Full Text PDF

The chemokine BRAK/CXCL14 is an ancient member of the chemokine family whose functions in the brain are completely unknown. We examined the distribution of CXCL14 in the nervous system during development and in the adult. Generally speaking, CXCL14 was not expressed in the nervous system prior to birth, but it was expressed in the developing whisker follicles (E14.

View Article and Find Full Text PDF

Enhancing the ability of either endogenous or transplanted oligodendrocyte progenitors (OPs) to engage in myelination may constitute a novel therapeutic approach to demyelinating diseases of the brain. It is known that in adults neural progenitors situated in the subventricular zone of the lateral ventricle (SVZ) are capable of generating OPs which can migrate into white matter tracts such as the corpus callosum (CC). We observed that progenitor cells in the SVZ of adult mice expressed CXCR4 chemokine receptors and that the chemokine SDF-1/CXCL12 was expressed in the CC.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are the progenitors of neurons and glial cells during both embryonic development and adult life. The unstable regulatory protein Geminin (Gmnn) is thought to maintain neural stem cells in an undifferentiated state while they proliferate. Geminin inhibits neuronal differentiation in cultured cells by antagonizing interactions between the chromatin remodeling protein Brg1 and the neural-specific transcription factors Neurogenin and NeuroD.

View Article and Find Full Text PDF

Chemokines are small secreted proteins that chemoattract and activate immune and non-immune cells. Their role in the immune system is well-known, and it has recently been suggested that they may also play a role in the central nervous system (CNS). Indeed, they do not only act as immunoinflammatory mediators in the brain but they also act as potential modulators in neurotransmission.

View Article and Find Full Text PDF

Multiple entry receptors can mediate infection of cells by herpes simplex virus (HSV), permitting alternative pathways for infection and disease. We investigated the roles of two known entry receptors, herpesvirus entry mediator (HVEM) and nectin-1, in infection of neurons in the CNS and the development of encephalitis. Wild-type, HVEM KO, nectin-1 KO, and HVEM/nectin-1 double KO mice were inoculated with HSV into the hippocampus.

View Article and Find Full Text PDF

CCR2 chemokine receptor signaling has been implicated in the generation of diverse types of neuropathology, including neuropathic pain. For example, ccr2 knock-out mice are resistant to the establishment of neuropathic pain, and mice overexpressing its ligand, monocyte chemoattractant protein-1 (MCP1; also known as CCL2), show enhanced pain sensitivity. However, whether CCR2 receptor activation occurs in the central or peripheral nervous system in states of neuropathic pain has not been clear.

View Article and Find Full Text PDF
Article Synopsis
  • Stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 are crucial for the development and function of the dentate gyrus (DG), especially in adult neurogenesis.
  • SDF-1 is found in DG neurons and blood vessel-associated endothelial cells, and it interacts with dividing neural progenitors and differentiating neuroblasts in the subgranular zone (SGZ).
  • SDF-1 enhances GABAergic transmission to neural progenitors, indicating its role as a neurotransmitter and suggesting that SDF-1/CXCR4 signaling is significant for regulating adult neurogenesis in the DG.
View Article and Find Full Text PDF

The regulated migration of stem cells is a feature of the development of all tissues and also of a number of pathologies. In the former situation the migration of stem cells over large distances is required for the correct formation of the embryo. In addition, stem cells are deposited in niche like regions in adult tissues where they can be called upon for tissue regeneration and repair.

View Article and Find Full Text PDF

Chemokines are small secreted proteins that chemoattract and activate immune and non-immune cells both in vivo and in vitro. In addition to their well-established role in the immune system, several recent reports have suggested that chemokines and their receptors may also play a role in the central nervous system (CNS). The best known central action is their ability to act as immunoinflammatory mediators.

View Article and Find Full Text PDF

We previously demonstrated that chemokine receptors are expressed by neural progenitors grown as cultured neurospheres. To examine the significance of these findings for neural progenitor function in vivo, we investigated whether chemokine receptors were expressed by cells having the characteristics of neural progenitors in neurogenic regions of the postnatal brain. Using in situ hybridization we demonstrated the expression of CCR1, CCR2, CCR5, CXCR3, and CXCR4 chemokine receptors by cells in the dentate gyrus (DG), subventricular zone of the lateral ventricle, and olfactory bulb.

View Article and Find Full Text PDF

Chemokines play a key role in inflammation. They are expressed not only in neuroinflammatory conditions, but also constitutively by different cell types, including neurons in the normal brain, suggesting that they may act as modulators of neuronal functions. Here, we investigated a possible neuroendocrine role of the chemokine stromal cell-derived factor 1 (SDF-1)/CXCL12.

View Article and Find Full Text PDF

Chemokines and their receptors are well described in the immune system, where they promote cell migration and activation. In the central nervous system, chemokine has been implicated in neuroinflammatory processes. However, an increasing number of evidence suggests that they have regulatory functions in the normal nervous system, where they could participate in cell communication.

View Article and Find Full Text PDF

Chemokines are small secreted proteins that chemoattract and activate immune and non-immune cells both in vivo and in vitro. Besides their well-established role in the immune system, several recent reports have suggested that chemokines and their receptors may also play a role in the central nervous system (CNS). The best-known central action is their ability to act as immuno-inflammatory mediators.

View Article and Find Full Text PDF

The monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor CCR2 are key modulators of immune functions. In the nervous system, MCP-1/CCL2 is implicated in neuroinflammatory pathologies. However, cerebral functions of MCP-1/CCL2 under normal conditions are still unclear.

View Article and Find Full Text PDF