Publications by authors named "Ghavami R"

Herein, an affordable and simple analytical device is presented to portable identify of garlic in 30 min; the evaluation needs no pre-treatment of sample. The analytical device fabrication was did employing a headspace-based nanosensor array using of inexpensive materials as commercial filter discs, quantum dots (QDs), and metallic nanoparticles (MNPs). The nanoarray is fabricated by the accumulation QDs on MNPs surface, that results in the production of ensembles of QDs/MNPs.

View Article and Find Full Text PDF

Internet of Wearable Things (IoWT) will be a major breakthrough for remote medical monitoring. In this scenario, wearable biomarker sensors have been developing not only to diagnose point-of-care (POC) of diseases, but also to continuously manage them. On-body tracking of biomarkers in biofluids is regarded as a proper substitution of conventional biomarker sensors for dynamic sampling and analyzing due to their high sensitivity, conformability, and affordability, creating ever-rising the market demand for them.

View Article and Find Full Text PDF

The outbreak of coronavirus disease 2019 (COVID-19) at the end of 2019 affected global health. Its infection agent was called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Wearing a mask, maintaining social distance, and vaccination are effective ways to prevent infection of SARS-CoV-2, but none of them help infected people.

View Article and Find Full Text PDF

Background: Frizzled-8 (FZD8) receptor is a therapeutic target for cancer treatment and recent research has shown that carbamazepine (CBZ) can inhibit this receptor.

Objective: In this work, it has been tried to optimize CBZ to enhance its binding capacity to the N6W binding site of FZD8 by using structure-based drug design methods.

Methods: CBZ and its 83 derivatives were docked to the N6W binding site of FZD8.

View Article and Find Full Text PDF

Phosphorylation of PI3Kγ as a member of lipid kinases-enzymes, plays a crucial role in regulating immune cells through the generation of intracellular signals. Deregulation of this pathway is involved in several tumors. In this research, diverse sets of potent and selective isoform-specific PI3Kγ inhibitors whose drug-likeness was confirmed based on Lipinski's rule of five were used in the modeling process.

View Article and Find Full Text PDF

Amino acid (AA) disorders are the main class of inborn errors of metabolism with diverse medical presentations. This paper was aimed to provide a novel and efficient sensor array for the quantification and differentiation of AAs using different pH buffer solutions as sensor elements (SEs) and nanocurcumin (NC) in the role of a marker in biofluids of newborn babies. Amino and carboxyl groups along with the side chain of different AAs in different pH buffer solutions are protonated or deprotonated.

View Article and Find Full Text PDF

Metal ions, specifically alkaline earth metal ions (AEMIs; Mg, Ca, Sr, and Ba), have essential roles in industrial processes, medical testing, and environmental evaluation; therefore, developing sensitive detection methods capable of their contents is highly required. To this aim, we have designed an absorbance nanosensor array using three metallochromic dyes decorated on AuNPs and have monitored variations in AuNP plasmonic profiles upon the addition of AEMIs in different buffer and pH solutions. The array is designed in a tunable size of 2 × 3 × 1(2/3); as the type buffer and pH of solution are fixed, the number of dyes can be changed in three individual modes, three binary modes, and a ternary mode, respectively.

View Article and Find Full Text PDF

A new subset of furan-pyrazole piperidine derivatives was used for QSAR model development. These compounds exhibit good Akt1 inhibitory activity; moreover, antiproliferative activities in vitro against OVCAR-8 (Human ovarian carcinoma cells) and HCT116 (human colon cancer cells), were confirmed for them. Based on the relevant three-dimensional (3D) and 2D autocorrelation descriptors, selected by genetic algorithm (GA), multiple linear regression (MLR) was established on half maximal-inhibitory concentration (IC), in Akt1 and cancer cell lines independently.

View Article and Find Full Text PDF

In this study, we determine the acidity constants of methylthymol blue (MTB) and association constants of its complexes with the Zn, Cu, and Fe metal ions (MIs), through theoretical and experimental means. The complexes were characterized using UV-Visible absorption spectroscopy combined with soft/hard chemometrics methods and quantum chemical calculations. Quantum chemical calculations revealed that electronic transitions in the UV-Visible spectra of MTB have mixed n → π* and π → π* characters.

View Article and Find Full Text PDF

Here, a facilely constructed 3 × 3 visible-light cross reactive sensor array based on nanoaggregation of curcumin (Cur) is proposed for the identification and quantification of metal ions (MIs). Synthesis of nanocurcumin (NCur) was characterized by UV-Vis spectrophotometry, transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR). The average particle size was estimated about 5.

View Article and Find Full Text PDF

Because of numerous inherent and unique characteristics of phytochemicals as bioactive compounds derived from plants, they have been widely used as one of the most interesting nature-based compounds in a myriad of fields. Moreover, a wide variety of phytochemicals offer a plethora of fascinating optical and electrochemical features that pave the way toward their development as optical and electrochemical (bio)sensors for clinical/health diagnostics, environmental monitoring, food quality control, and bioimaging. In the current review, we highlight how phytochemicals have been tailored and used for a wide variety of optical and electrochemical (bio)sensing and bioimaging applications, after classifying and introducing them according to their chemical structures.

View Article and Find Full Text PDF

Here, a three-channel absorbance sensor array based on the nanocurcumin-metal ion (NCur-MI) aggregates is designed for the detection and identification of deoxyribonucleic acid nucleobases (DNA NBs) for the first time. For this purpose, the binding affinities of some of MIs (i.e.

View Article and Find Full Text PDF

A nanocurcumin (NCur)-VO ensemble-based optical nanoprobe is proposed for monitoring of human serum albumin (HSA) and transferrin (TF) in biofluids of serum and urine. The determination strategy of HSA and TF is based on the decrease of the absorbance/color intensity of NCur in the presence of VO due to the formation of NCur-VO ensemble. This leads to aggregation of the NCur and the color change of solution from orange to pale pink.

View Article and Find Full Text PDF

A nanopaper-based analytical device (NAD) is described for a colorimetric metal-complexing indicator-displacement assay (M-IDA) for zoledronic acid (ZA). Bacterial cellulose nanopaper was doped with curcumin to obtain a chemosensor on which hydrophilic test zones were patterned via laser printing of hydrophobic walls. The color intensity of the test zones decreases in the presence of Fe(III) due to the formation of Fe(III)-curcumin complex.

View Article and Find Full Text PDF

In this colorimetric assay for sensitive detection of prostate specific antigen (PSA) tumor marker, adsorbed non-thiolated poly-Adenine aptamer (polyA Apt) on the gold nanoparticles (AuNPs) surface was used. By incubating the AuNPs and the PSA specific aptamer prior to target addition, polyA Apt adsorbed on the gold nanoparticles and could bind the target while preventing non-specific interactions. Adsorbed polyA Apt on the AuNPs prevents aggregation of them by poly(diallyldimethylammoniumchloride) (PDDA).

View Article and Find Full Text PDF

The current work describes the development of a "nanopaper-based analytical device (NAD)", through the embedding of curcumin in transparent bacterial cellulose (BC) nanopaper, as a colorimetric assay kit for monitoring of iron and deferoxamine (DFO) as iron-chelating drug in biological fluids such as serum blood, urine and saliva. The iron sensing strategy using the developed assay kit is based on the decrease of the absorbance/color intensity of curcumin-embedded in BC nanopaper (CEBC) in the presence of Fe(III), due to the formation of Fe(III)-curcumin complex. On the other hand, releasing of Fe(III) from Fe(III)-CEBC upon addition of DFO as an iron-chelating drug, due to the high affinity of this drug to Fe(III) in competition with curcumin, which leads to recovery of the decreased absorption/color intensity of Fe(III)-CEBC, is utilized for selective colorimetric monitoring of this drug.

View Article and Find Full Text PDF

In this research, we used CoMFA, LSSVM and FFANN for creating QSAR models for predicting AXL Kinase inhibitory activity of N-[4-(Quinolin-4-yloxy)phenyl]benzenesulfonamides. A CoMFA model with three components was developed and CoMFA contour maps were interpreted to extract chemical features that influence the inhibitory activity of these molecules. for train and test set of CoMFA model were 0.

View Article and Find Full Text PDF

Two kinds of aptasensors for ampicillin (AMP) are described. The assay strategies include the use of gold nanoparticles (AuNPs) that were modified with (a) a thiolated aptamer (T-Apt), and (b) a non-thiolated polyadenine aptamer (polyA Apt). The AuNPs and the aptamers were brought to interaction prior to addition of AMP.

View Article and Find Full Text PDF

In this study, based on molecular docking analysis and comparative molecular field analysis (CoMFA) modelling of a series of 71 CD38 inhibitors including 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides, new CD38 inhibitors were designed. The interactions of the molecules with the greatest and the lowest activities with the nicotinamide mononucleotide (NMN) binding site were investigated by molecular docking analysis. A CoMFA model with four partial least squares regression (PLSR) components was developed to predict the CD38 inhibitory activity of the molecules.

View Article and Find Full Text PDF

To identify new HSP90 inhibitors, the ATP binding site of the N-domain of HSP90 was targeted by molecular docking of a library of 23,129,083 compounds (from the ZINC database) to the ATP binding site of the N-domain of HSP90. Structure-based virtual screen (SBVS) was performed using idock software on the istar web platform. Based on idock binding energies, 40 molecules were considered as HSP90 inhibitors.

View Article and Find Full Text PDF

A paper based analytical device is presented for the determination of Cr(III) and Cr(VI) using gold nanoparticles (AuNPs) modified with 2,2'-thiodiacetic acid. The modified AuNPs were characterized using UV-Vis spectrophotometry, Fourier transform infrared, dynamic light scattering, zeta potential, energy dispersive spectroscopy and transmission electron microscopy. Cr(III) ions induce the aggregation of the modified AuNPs, and the color of the nanoprobe changes from red to blue.

View Article and Find Full Text PDF

Background: HSP90 is necessary for the conformational maturation of proteins, proteins disaggregation, folding newly synthesized peptides and the refolding of denatured proteins. The inhibition of HSP90 leads to proteasomal degradations of client proteins that finally kill cancer cells.

Methods: In this research, molecular docking and comparative molecular field analysis (CoMFA) were used to investigate the interactions of tetrahydropyrido[4,3-d]pyrimidine derivatives with the N-terminal domain binding site of the HSP90 and predicting their inhibitory activities.

View Article and Find Full Text PDF

Unlabelled: Aims & Scope: In this research, 8 variable selection approaches were used to investigate the effect of variable selection on the predictive power and stability of CoMFA models.

Materials & Methods: Three data sets including 36 EPAC antagonists, 79 CD38 inhibitors and 57 ATAD2 bromodomain inhibitors were modelled by CoMFA. First of all, for all three data sets, CoMFA models with all CoMFA descriptors were created then by applying each variable selection method a new CoMFA model was developed so for each data set, 9 CoMFA models were built.

View Article and Find Full Text PDF

Ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) approaches were used to identify new inhibitors for ATAD2 bromodomain. The LBVS approach was used to search 23,129,083 clean compounds to identify compounds similar to an active compound with reported pIC equal to 7.2.

View Article and Find Full Text PDF

A simple, sensitive and efficient colorimetric assay platform for the determination of Cu was proposed with the aim of developing sensitive detection based on the aggregation of AuNPs in presence of a histamine H2-receptor antagonist (famotidine, FAM) as recognition site. This study is the first to demonstrate that the molar extinction coefficients of the complexes formed by FAM and Cu are very low (by analyzing the chemometrics methods on the first order data arising from different metal to ligand ratio method), leading to the undesirable sensitivity of FAM-based assays. To resolve the problem of low sensitivity, the colorimetry method based on the Cu-induced aggregation of AuNPs functionalized with FAM was introduced.

View Article and Find Full Text PDF