We develop an inverse geometric optimization technique that allows the derivation of optimal and robust exact solutions of low-dimension quantum control problems driven by external fields. We determine in the dynamical variable space optimal trajectories constrained to robust solutions by Euler-Lagrange optimization; the control fields are then derived from the obtained robust geodesics and the inverted dynamical equations. We apply this method, referred to as robust inverse optimization (RIO), to design optimal control fields producing a complete or half population transfer and a not quantum gate robust with respect to the pulse inhomogeneities.
View Article and Find Full Text PDFSpectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N.
View Article and Find Full Text PDFThe design and construction of the first prototypical QHC (Quantum Hamiltonian Computing) atomic scale Boolean logic gate is reported using scanning tunnelling microscope (STM) tip-induced atom manipulation on an Si(001):H surface. The NOR/OR gate truth table was confirmed by dI/dU STS (Scanning Tunnelling Spectroscopy) tracking how the surface states of the QHC quantum circuit on the Si(001):H surface are shifted according to the input logical status.
View Article and Find Full Text PDF