The 2017 World Health Organization Fact Sheet highlights that coronary artery disease is the leading cause of death globally, responsible for approximately 30% of all deaths. In this context, machine learning (ML) technology is crucial in identifying coronary artery disease, thereby saving lives. ML algorithms can potentially analyze complex patterns and correlations within medical data, enabling early detection and accurate diagnosis of CAD.
View Article and Find Full Text PDFHealthcare (Basel)
October 2023
The intricate and multifaceted nature of diabetes disrupts the body's crucial glucose processing mechanism, which serves as a fundamental energy source for the cells. This research aims to predict the occurrence of diabetes in individuals by harnessing the power of machine learning algorithms, utilizing the PIMA diabetes dataset. The selected algorithms employed in this study encompass Decision Tree, K-Nearest Neighbor, Random Forest, Logistic Regression, and Support Vector Machine.
View Article and Find Full Text PDFVehicular Ad hoc Networks (VANETs) an important category in networking focuses on many applications, such as safety and intelligent traffic management systems. The high node mobility and sparse vehicle distribution (on the road) compromise VANETs network scalability and rapid topology, hence creating major challenges, such as network physical layout formation, unstable links to enable robust, reliable, and scalable vehicle communication, especially in a dense traffic network. This study discusses a novel optimization approach considering transmission range, node density, speed, direction, and grid size during clustering.
View Article and Find Full Text PDF